Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Brain Dis ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995496

RESUMO

Betanin, a natural compound with anti-inflammatory and antioxidant properties, has shown promise in mitigating Alzheimer's disease (AD) by reducing amyloid plaque production. Employing network pharmacology, this study aimed to elucidate betanin's therapeutic mechanism in AD treatment. Through integrated analyses utilizing SwissTargetPrediction, STITCH, BindingDB, Therapeutic Target Database (TTD), and OMIM databases, potential protein targets of betanin in AD were predicted. Gene ontology analysis facilitated the identification of 49 putative AD targets. Subsequent gene enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed associations between these targets and AD. Network pharmacology techniques and molecular docking aided in prioritizing essential genes, with APP, CASP7, ITPR1, CASP8, CASP3, ITPR3, and NF-KB1 emerging as top candidates. The results provide novel insights into betanin's therapeutic efficacy, shedding light on its potential clinical application in AD treatment. By targeting key genes implicated in AD pathology, betanin demonstrates promise as a valuable addition to existing therapeutic strategies. This holistic approach emphasizes the relevance of network pharmacology and bioinformatics analysis in understanding natural chemical disease therapy processes.

2.
Mol Biol Rep ; 50(11): 9453-9468, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676432

RESUMO

Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.


Assuntos
Fraturas Ósseas , Osteoporose , Plantas Medicinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osso e Ossos/metabolismo , Medicina Herbária , Osteogênese
3.
Int J Neurosci ; 133(4): 417-425, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33930999

RESUMO

BACKGROUND: Deficiency of vitamin D along with traumatic brain injury (TBI) augments the risk of injury severity. This possibly affects the therapeutic regimen prescribed for TBI which may pessimistically affects its outcome. METHODS: Studies literature search was conducted in Google Scholar and PubMed. The inclusions were studies performed clinically on both male and female. All included studies' references were also reviewed to find any additional relevance related to this review. Studies published in English were considered for this review. This review focuses upon the incidence of vitamin D deficiency in TBI and how it affects the Quality of life of the sufferer. RESULTS: A total of 176 studies were reviewed and 58 were thoroughly focussed for review as they met inclusion criteria. These studies demonstrate that levels of vitamin D influence the recovery outcome after TBI. Vitamin D deficiency has been found to cause more deterioration in severe TBI than in patients with mild TBI. CONCLUSION: Paucity of vitamin D significantly affects the outcome after brain injury. This clearly validates the necessity for screening of vitamin D levels in neurological deficit in order to reduce the risk of morbidity in terms of neurocognitive disorder.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Deficiência de Vitamina D , Humanos , Masculino , Feminino , Vitamina D , Qualidade de Vida , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico
4.
Cell Biochem Funct ; 40(2): 106-117, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931308

RESUMO

Fatty acid amide hydrolase (FAAH) is a prominent enzyme of the endocannabinoid system that degrades endogenous cannabinoid anandamide and oleamide. These lipid amides are involved in reducing neuroinflammation, pain and regulation of other neurological-related activities including feeding behaviours, sleep patterns, body temperature, memory processes and locomotory activity. Many of these activities are affected in most neurological disorders. Increased levels of brain FAAH expressions are speculated to correlate with decreased levels of lipid amides and increased AD-related symptoms. Thus, inhibition of FAAH shows promising potential in amelioration of symptoms associated with Alzheimer's disease (AD). The review aims at establishing the detrimental role of increased FAAH expression in AD and highlights the translational potential and therapeutic application of FAAH inhibitors in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Amidoidrolases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Memória
5.
Drug Dev Res ; 83(5): 1097-1110, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315525

RESUMO

In recent years, the drug repositioning strategy has gained considerable attention in the drug discovery process that involves establishing new therapeutic uses of already known drugs. In line with this, we have identified digoxin a cardiac glycoside, as a potent inhibitor of soluble epoxide hydrolase (sEH) enzyme employing in silico high throughput screening protocols and further confirmed using in vitro cell-free sEH inhibitory assay and in vivo preclinical studies in rodents for its repurposing in hyperalgesia, inflammation, and related disorders. Oral administration of digoxin at dose 0.2 mg/kg significantly reduced (p < .0001) the allodynia in mice induced by using hot plate (3.6 ± 1.9) and tail-flick test (7.58 ± 0.9). In addition, digoxin at a dose of 0.2 mg/kg showed marked reduction (94%, p < .0001) in acetic acid-induced abdominal contraction in rats. Further, digoxin also demonstrated antipyretic activity (37.04 ± 0.2, p < .0001) and showed notable reduction (0.60 ± 0.06) in carrageenan-induced paw edema in rats. Also, the histopathological evaluation revealed that digoxin treatment attenuated the edema, neutrophil infiltration, and alveolar septal thickening in lung tissue. These findings are novel and highlight the newer insights towards repurposing digoxin as a new lead in the treatment of hyperalgesia, inflammation, and related disorders.


Assuntos
Analgésicos , Hiperalgesia , Analgésicos/farmacologia , Animais , Carragenina/efeitos adversos , Digoxina/efeitos adversos , Reposicionamento de Medicamentos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Dor/tratamento farmacológico , Ratos
6.
J Ethnopharmacol ; 321: 117559, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072294

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (T. cordifolia) (Willd.) Miers, a member of the Menispermaceae, family documented in the ancient textbooks of the Ayurveda System of Medicine, has been used in the management of sciatica pain and diabetic neuropathy. AIM: The study has been designed to evaluate the antinociceptive potential of various extracts of T. cordifolia stem in Paclitaxel (PT)-generated neuropathic pain model in albino rats and explore its possible mechanism employing molecular docking studies. METHODS: Stems of T. cordifolia were shade dried, grinded in fine powder, and extracted separately with different solvents viz. ethanol, water & hydro-alcoholic and characterized using LCMS/MS. The antinociceptive property of T. cordifolia stem (200 and 400 mg/kg) was examined in albino rats using a PT-induced neuropathic pain model. Further, the effect of these extracts was also observed using different behavioral assays viz. cold allodynia, mechanical hyperalgesia (pin-prick test), locomotor activity test, walking track test, and Sciatic Functional Index (SFI) in rats. Tissue lysate of the sciatic nerve was used to determine various biochemical markers such as GSH, SOD, TBARS, tissue protein, and nitrite. Further to explore the possible mechanism of action, the most abundant and therapeutically active compounds available in aqueous extract were analyzed for binding affinity towards soluble epoxide hydrolase (sEH) enzyme (PDB ID: 3wk4) employing molecular docking studies. RESULTS: The results of the LCMS/MS study of different extracts of T. cordifolia indicated presence of alkaloids, glycosides, terpenoids, sterols and sugars such as amritoside A, tinocordin, magnoflorine, N-methylcoclaurine, coridine, 20ß-hydroxyecdysone and menaquinone-7 palmatin, cordifolioside A and tinosporine etc. Among all the three extracts, the hydroalcoholic extract (400 mg/kg) showed the highest response followed by aqueous and ethanolic extracts as evident in in vivo behavioral and biochemical evaluations. Furthermore, docking studies also exposed that these compounds viz. N-methylcoclaurine tinosporin, palmatine, tinocordin, 20ß-hydroxyecdysone, and coridine exhibited well to excellent affinity towards target sEH protein. CONCLUSION: T. cordifolia stem could alleviate neuropathic pain via soluble epoxide hydrolase inhibitory activity.


Assuntos
Neuralgia , Tinospora , Ratos , Animais , Paclitaxel , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Tinospora/química , Epóxido Hidrolases , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico
7.
Int J Biol Macromol ; 271(Pt 2): 132280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744364

RESUMO

The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Hidrogéis/química , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Regeneração/efeitos dos fármacos
8.
Cell Biochem Biophys ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995530

RESUMO

Aconitum heterophyllum Wall ex Royle. (Ranunculaceae) is a traditional medicinal herb that has shown extensive pharmacological potential to treat cough, diarrhea, and infectious diseases but no scientific evidence is available to validate its antiasthmatic potential. In this study, we have investigated the tracheal relaxation and antiasthmatic activity of the selected bioactive fraction of A. heterophyllum. Chemical profiling of the most effective fraction obtained via bioassay-guided fractionation was done using LC-MS (Liquid chromatography-mass spectrometry, a technique utilized in the identification, separation, and quantification of known and unknown compounds). Molecular docking analysis of characterized constituents was performed to recognize the binding receptors, followed by an evaluation of the tracheal relaxation ability of active fraction. An acute oral toxicity study of the most effective fraction was done using OECD guidelines 423. Further, the therapeutic efficacy of the fraction was validated in asthma using a guinea pig model of ovalbumin (OVA) induced allergic asthma. The bio-guided activity revealed that hydro-methanolic extract of A. heterophyllum roots (F-1) was the most active fraction. LC-MS analysis of F-1 showed the presence of six major bioactive compounds in F-1. Molecular docking studies revealed strong binding affinities of identified constituents with histaminic receptor (H1) and muscarinic receptor (M3). The ex vivo study demonstrated smooth muscle relaxant activity of F-1 via dysregulating diverse signal transduction pathways viz. histaminic and muscarinic receptors antagonism (non-competitive), stimulation of ß2-adrenergic receptor pathway, and soluble guanylyl cyclase activation. The findings of acute oral toxicity studies revealed that F-1 had no toxicity up to the dose of 2000 mg/Kg. The anti-asthmatic therapeutic efficacy of F-1 was further confirmed by the amelioration of respiratory hyperresponsiveness in asthmatic guinea pigs. This is the first evidence-based study showing the antiasthmatic therapeutic potential of the traditionally used herb A. heterophyllum through, computational and animal studies.

9.
Cell Biochem Biophys ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904723

RESUMO

Depression is a neuropsychological disorder with a complex pathophysiology and its pharmacotherapy is compromised by adverse side effects. Addressing the need for effective treatment for depression, the current study aims to characterize the antidepressant activity of oil extract derived from Aethoscytus foveolus, bugs that are widely available in India, in a mice model of stress-induced depression. Chemical moieties characterized by GC-MS of A. foveolus oil extract have shown good affinity for monoamine oxidase A (MAO-A) in-silico. In-vitro MAO-inhibitory assay using mouse brain homogenates also showed similar results at IC50 1.363 nM (R2 = 0.981, SD ± 0.05, n = 3) of it. These results encouraged us to investigate the antidepressant potential of this oil extract in vivo. Stress-exposed mice (Swiss Albino, either sex, 25-30 gm) were administered 5 and 10 mg/kg doses of oil extract and classified as separate groups (N = 6 per group). Behavioral tests like the forced-swim test, tail-suspension test, and open-field test demonstrated significant attenuation of stress-induced depressive-like behavior of mice by both doses (p < 0.0001 with positive control group i.e., stress group), while biochemical tests on mice brain tissues showed amelioration of stress-induced hyperactivation of MAO (p < 0.0001) and oxidative stress (by increasing Superoxide dismutase and catalase, while reducing lipid peroxidase and nitric oxide) (p < 0.0001). The altered mRNA expression of proinflammatory cytokines (NF-κB, IL-6, IL-12, and TNF-α) (p < 0.015) was also improved by this oil extract. In addition, histopathology of hippocampus tissues of mice supports that this oil recovers stress-mediated structural changes of the brain. In conclusion our findings suggest that oil derived from A. foveolus could be beneficial in the alleviation of stress-mediated depressive-like behavior of mice, and in our knowledge, this is the first report identifying anti-neurodegenerative potential of A. foveolus.

10.
Expert Opin Drug Metab Toxicol ; 20(4): 181-195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480460

RESUMO

INTRODUCTION: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED: The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION: AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.


Assuntos
Inteligência Artificial , Simulação por Computador , Desenvolvimento de Medicamentos , Aprendizado de Máquina , Farmacocinética , Medicina de Precisão , Humanos , Desenho de Fármacos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Modelos Biológicos , Modelos Moleculares , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Farmacogenética , Medicina de Precisão/métodos , Reprodutibilidade dos Testes
11.
Neurochem Res ; 38(10): 2136-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23949197

RESUMO

Triazophos, O,O-diethyl-1-H-1,2,4-triazol-3-yl phosphorothioate, (TZ) is an organophosphate pesticide widely used as an insecticide in agriculture fields, however, its adverse effects on cognitive function remain unknown till date. The present study was designed to identify the effect of TZ on cognitive function in order to gain an insight into the molecular mechanism(s) probably involved in TZ induced toxicity. Wistar male albino rats were orally administered with TZ at 8.2 mg/kg bw daily for 30 days. Cognitive function was assessed by evaluating step down latency (SDL) in passive avoidance apparatus, transfer latency (TL) on elevated plus maze and escape latency (EL) using morris water maze. The biochemical changes, in terms of malondialdehyde (MDA), reduced glutathione (GSH) and brain derived neurotrophic factor (BDNF) levels were evaluated in hippocampi regions. Relative mRNA expression and protein expression of BDNF were also evaluated. The results demonstrated that rats treated with TZ showed significantly (p < 0.01) reduced SDL and prolonged TL and EL as compared to control group rats. Moreover, significantly low (p < 0.01) mRNA expression and protein levels (p < 0.001) of BDNF, increased MDA and reduced GSH levels were observed in TZ treated rats. The study concludes that chronic exposure to TZ significantly impairs the learning and memory which may be attributed to the significantly reduced mRNA and protein expression of BDNF in hippocampus. Moreover, BDNF is negatively correlated to MDA levels and positively correlated to GSH levels. Hence, it can be suggested that interplay between BDNF and oxidative stress plays an important role in mediating the toxic effects of TZ.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtornos Cognitivos/induzido quimicamente , Organotiofosfatos/toxicidade , Estresse Oxidativo , Triazóis/toxicidade , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Cognição/efeitos dos fármacos , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inseticidas/toxicidade , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
12.
Pain Pract ; 13(4): 264-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22882673

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of oral tramadol therapy (50 to 200 mg/day) in the treatment for post-herpetic neuralgia (PHN). METHODS: The study was a prospective, single-blind, non-responder vs. responder, randomized trial conducted in 100 outpatients of PHN after oral administration of tramadol for 4 weeks. Those patients who had achieved 50% or greater pain relief after 14 days of oral tramadol treatment were categorized as responders and those reporting < 50% pain relief were categorized as non-responders. Rescue analgesia was provided by the topical application of a cream consisting of the combination of 3.33% doxepin and 0.05% capsaicin to the affected areas of PHN patients of both groups for at least 14 days, along with tramadol therapy. The rescue analgesia was extended to 4 weeks in patients of the non-responder group. The primary endpoints were measured using a numerical rating scale (NRS) at rest and with movement. Secondary endpoints included additional pain ratings such as global perceived effect (GPE), Neuropathic Pain Symptom Inventory scores (NPSI), daily sleep interference score (DSIS), quality of life (QOL) as per WHO QOL-BREF Questionnaire scores, patient and clinician ratings of global improvement. The 2 groups were compared on the basis of pain intensity scores, encompassing primary as well as secondary endpoints, and QOL after 28 days of the treatment regimen. RESULTS: Pain intensity scores measured by NRS (at resting and with movement), NPSI, and DSIS were consistently reduced (P < 0.001) over 28 days at varying intervals in both the groups, but the magnitude of reduction was higher in responders than non-responders. A concomitant improvement (P < 0.001) was observed in GPE on days 3, 14, and 28 as compared to the respective baseline scores in both the groups. Although the WHO QOL-BREF scores showed significant (P < 0.001) improvement in QOL of PHN patients at days 14 and 28 in both the groups, the magnitude of improvement was higher in responders as compared to non-responders. Significant improvement in pain intensity scores and QOL in non-responders is mainly attributed to the use of rescue analgesia for 28 days rather than recommended tramadol therapy. CONCLUSIONS: Treatment with tramadol 50 to 200 mg per day was associated with significant pain reduction in terms of enhanced pain relief, reduced sleep interference, greater global improvement, diminished side-effect profile, and improved QOL in PHN patients from North India. Further categorization of PHN patients may be helpful so that additional or alternative therapy may be prescribed to non-responders.


Assuntos
Analgésicos Opioides/administração & dosagem , Infecções por Herpesviridae/complicações , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Tramadol/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Índia , Masculino , Pessoa de Meia-Idade , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Estudos Prospectivos , Qualidade de Vida , Método Simples-Cego , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
13.
Mini Rev Med Chem ; 23(22): 2097-2116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37170998

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, having characteristic clinical features of progressive memory loss and visuospatial, language, and cognitive impairment. In addition, patients often suffer from comorbid depression and aggression. Aging is a major contributing factor, though the exact pathophysiological involvement in the disease progression is debatable. Biologists demonstrate that AD is not a result of a single pathological incident. However, an uncontrolled myriad of events is responsible for the pathophysiological condition; hence, it is regarded as a multifaceted disease. Pathophysiologically, AD is described by having a long preclinical stage (proteinopathy accumulation stage), followed by a short prodromal/dementia stage (clinical symptom onset), as evident via biomarker studies. Specific and sensitive biomarkers are needed to track disease progression and treatment. Neuroinflammation is one of the cardinal pathophysiological events of AD that form a positive activation loop between proteinopathy and pro-inflammatory mediators. However, the starting point is inconclusive. The vital cells, like glia, known as brain scavenger cells, remain in harmony between their quiescent and activated morphological states during any stimulus and help to regulate the neuroinflammatory microenvironment. Hence, focusing on the dysfunctional microglia could be a novel therapeutic approach to managing neuroinflammation condition in AD. This review focuses on the translational evidence of anti-diabetic and anti-inflammatory candidates in AD management. It also highlights the importance of the microglia activation spectrum, eicosanoid signaling, cytokine signaling, and inflammatory mediators responsible for the neuroinflammation cascade. The repeated failure of single-approached therapies has diverted researchers' attention to AD-modifying approaches and AD multimodal treatment plans. This review is an effort to brief the role of new players (like micronutrients and nutraceutical applications) that have been reported as helpful in suppressing AD severity. Apart from anti-diabetic candidates, various insulin-mimetic and insulin-sensitizer drugs have also been assessed to target insulin insensitivity to mitigate AD progression. However, these possibilities are in the investigational stage and not clinically established yet, though various AD animal models have verified the positive outcome.

14.
J Ethnopharmacol ; 306: 116206, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36690306

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the Ayurvedic system of medicine, Cedrus deodara bark has been utilized as a folk medicine to remove ovarian cysts and treat infertility in females. AIM: The present study is the first to investigate ameliorating potential of C. deodara bark on testosterone propionate and high-fat diet-induced polycystic ovarian syndrome in experimental rats. MATERIALS AND METHODS: LC-MS analysis of the fraction selected through bioassay-guided approach employing uterine relaxant activity was performed to determine the bioactive constituents present in it. Further, the identified compounds were docked on the catalytic site of the androgen receptor and insulin receptor substrate-1. Later, the fraction was investigated against testosterone propionate and high-fat diet-induced PCOS in rats. RESULTS: Chloroform fraction (F1) of the plant bark was found most active in uterine smooth muscle relaxant activity. LC-MS analysis of F1 indicated the presence of key flavonoids namely deodarin, cedrin, deodardione, and cedrusinin. Afterward, a molecular docking study of these compounds revealed impressive binding interactions with androgen receptor and insulin receptor substrate-1. Besides, in vivo studies, treatment with F1 significantly restored the estrous cycle in rats from the diestrus phase in a dose-dependent manner. Also, the disturbed metabolic and endocrine profile was markedly improved in rats. Later, histopathological analysis revealed the presence of a large number of mature follicles and corpora lutea in F1-treated rats. CONCLUSION: In a nutshell, F1 exhibited promising beneficial effects in PCOS and associated conditions via amelioration of metabolic, endocrine, and ovarian dynamics in experimental rats.


Assuntos
Síndrome do Ovário Policístico , Propionato de Testosterona , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Cedrus/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptores Androgênicos/metabolismo , Simulação de Acoplamento Molecular , Casca de Planta/metabolismo
15.
Mini Rev Med Chem ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612862

RESUMO

The glucokinase regulator (GCKR) gene encodes an inhibitor of the glucokinase enzyme (GCK), found only in hepatocytes and responsible for glucose metabolism. A common GCKR coding variation has been linked to various metabolic traits in genome-wide association studies. Rare GCKR polymorphisms influence GKRP activity, expression, and localization. Despite not being the cause, these variations are linked to hypertriglyceridemia. Because of their crystal structures, we now better understand the molecular interactions between GKRP and the GCK. Finally, small molecules that specifically bind to GKRP and decrease blood sugar levels in diabetic models have been identified. GCKR allelic spectrum changes affect lipid and glucose homeostasis. GKRP dysfunction has been linked to a variety of molecular causes, according to functional analysis. Numerous studies have shown that GKRP dysfunction is not the only cause of hypertriglyceridemia, implying that type 2 diabetes could be treated by activating liver-specific GCK via small molecule GKRP inhibition. The review emphasizes current discoveries concerning the characteristic roles of glucokinase and GKRP in hepatic glucose metabolism and diabetes. This information has influenced the growth of directed molecular therapies for diabetes, which has improved our understanding of lipid and glucose physiology.

16.
Life Sci ; 332: 122116, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739165

RESUMO

AIM: We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS: Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS: We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid ß-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE: This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Síndrome Metabólica , Ratos , Animais , Síndrome Metabólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Fígado Gorduroso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismo , Lipídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos
17.
J Ayurveda Integr Med ; 14(6): 100818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011760

RESUMO

BACKGROUND: Decalepis hamiltonii (D. hamiltonii) is Indian folk medicine in herbal preparations, to reduce appetite, and cures dysentery, bronchitis, uterine hemorrhage, and other ailments. OBJECTIVE: The current investigation focused on the hepatoprotective effect of D. hamiltonii roots fractions against liver damage. MATERIALS AND METHODS: The current research discussed the fraction from D. hamiltonii root extracts was used. Male Wistar rats (albino strain) were grouped into 4 distinct groups of six animals each. Group I: plain water and vehicle whereas Group II (CCl4 control): CCl4 (1 ml/kg, 20 % v/v in olive oil) over 7 days and vehicle; Over 7 days, Group III received Silymarin 100 mg/kg/day and tap water with 20 % v/v of CCl4, whereas Group IV (treatment group) received DHE 50 mg/kg/day, 100 mg/kg/day, and water. Assessment of biochemical parameters, Mitochondrial modulation, gene expression analysis, and RT-PCR, was used to estimate the protective action of DHEF in CCl4-intoxicated rats. RESULTS: The administration of CCl4 increased levels of total bilirubin (0.63 ± 0.97 mg/dl) plasma amino transferases (110.36 ± 1.13 U/L, 86.56 ± 2.41 U/L and 1.51 ± 1.36 mg/dl respectively) which were mitigated by D. hamiltonii treatment. Activity like Lipid peroxidation and content of nitric oxide also augmented, while the antioxidant action measured by GSH (9.64 ± 0.18 U/mg protein), SOD (3.69 ± 0.22 U/mg protein), and CAT (1.47 ± 0.01 U/mg protein) was reduced. Decalepis hamiltonii root provided substantial restoration of GSH (14.92 ± 0.04 nmol/gm protein), SOD (4.20 ± 0.18 U/mg protein), and CAT (2.71 ± 0.04 U/mg protein) levels. In addition, the acute phase reactants stimulated by CCl4 administration enhanced mRNA expressions of IL-6, IL-10, TNF-a, NF-κß, and COX-2, which were enhanced by D. hamiltonii treatment. CONCLUSIONS: In summary, DHEF protects the liver against CCl4-induced damage, possibly by mitochondrial modulation mechanism. These findings indicate that D. hamiltonii significantly moderates oxidative stress of CCl4-induced hepatotoxicity.

18.
Fundam Clin Pharmacol ; 37(6): 1153-1169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37354029

RESUMO

BACKGROUND: Tylophora indica (Burm. f.) Merr is a climbing perennial plant reported in Indian traditional system of medicine for its use in allergy and asthma. However, only few scientific studies have been performed in the past to validate its antiasthmatic potential. OBJECTIVES: The present study deals with investigation of airway smooth muscle relaxant and antiasthmatic potential of extract and subsequent fractions prepared from T. indica. METHODS: The most active fraction of T. indica leaves selected through bio-guided activity was subjected to liquid chromatography-mass spectrometry (LC-MS) analysis for chemical profiling. The binding affinity of identified compounds in fraction towards M3 and H1 receptors was determined by molecular docking study. F-2 (chloroform fraction prepared from methanolic extract of T. indica leaves) was examined for its smooth muscle relaxant properties using isolated trachea of guinea-pig. Further, F-2 was evaluated through in vivo studies employing ovalbumin-induced asthma model in guinea-pigs. RESULTS: F-2 was found most effective in bioassay-guided fractionation. Characterization by LC-MS analysis revealed presence of five major bioactive compounds in F-2 that showed good docking interactions with M3 and H1 receptors. The ex vivo study demonstrated that F-2 could significantly relax tracheal rings via targeting multiple signalling pathways videlicet, namely, noncompetitive antagonism of the histamine and muscarinic receptors, ß2-adrenergic stimulation and activation of soluble guanylyl cyclase. In in vivo studies, F-2 ameliorated airway hyperresponsiveness and decreased broncho alveolar lavage fluid (BALF) levels of inflammatory cytokines and immunoglobulin E (IgE). CONCLUSION: These results confirm the traditional use of T. indica as an antiasthmatic agent which are evidenced through ex vivo, in silico and in vivo studies.


Assuntos
Antiasmáticos , Asma , Animais , Cobaias , Ovalbumina , Tylophora , Simulação de Acoplamento Molecular , Asma/tratamento farmacológico , Asma/induzido quimicamente , Músculo Liso/fisiologia , Antiasmáticos/farmacologia , Traqueia/fisiologia
19.
Eur J Med Chem ; 259: 115681, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515921

RESUMO

Since decades, bosentan has been in use for the treatment of pulmonary arterial hypertension (PAH). However, chronic exposure to bosentan leads to the development of resistance, tolerance, and serious adverse effects that have restricted its usage in clinical practices. To surmount these limitations, some new bosentan derivatives have been synthesized and evaluated for their therapeutic efficacy in PAH. Molecular docking analyses of all the synthesized derivatives were carried out using the endothelin (ET) receptor. In addition, the inhibitory ability of synthesized derivatives was determined in in vitro assay employing an ET-1 human ELISA kit. Among the synthesized derivatives, three derivatives namely 17d, 16j, and 16h with higher docking scores and lower IC50 values were selected for determination of the magnitude of the binding force between the derivative and ET receptor using molecular dynamics (MD) simulations study. Further, these derivatives were subjected to in vivo studies using monocrotaline (MCT) induced PAH in rat model. Results of in vivo studies inferred that the derivatives exhibit impressive ability to reduce PAH. Besides, its protective role was also evidenced in hemodynamic and right ventricular hypertrophy analyses, histological analysis, cardiac biomarkers, hypoxia-inducible factor 1 alpha (HIF1α) levels, and biochemical studies. Furthermore, gene quantification by quantitative RT-PCR and Western blot analysis was also performed to examine its effect on the expression of key proteins in PAH. Notably, amongst three, derivative 16h exhibited the most encouraging results in molecular docking analysis, in vitro, in vivo, histopathological, biochemical, protein expression, and MD studies. Besides, derivative 16h also showed impressive pharmacokinetic features in ADMET analysis. In conclusion, derivative 16 h could act as a reliable ET receptor antagonist and requires further exploration to attain its therapeutic utility in PAH management.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Animais , Humanos , Bosentana/efeitos adversos , Antagonistas dos Receptores de Endotelina/efeitos adversos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Simulação de Acoplamento Molecular , Sulfonamidas/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico
20.
Curr Drug Metab ; 23(9): 678-692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692131

RESUMO

Liposomes nowadays have become a preferential drug delivery system since they provide facilitating properties to drugs, such as improved therapeutic index of encapsulated drug, target and controlled drug delivery, and less toxicity. However, conventional liposomes have shown some disadvantages, such as less drug loading capacity, poor retention, clearance by kidney or reticuloendothelial system, and less release of hydrophilic drugs. Thus, to overcome these disadvantages recently, scientists have explored new approaches and methods, viz., ligand conjugation, polymer coating, and liposome hybrids, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, liposome-in-nanofiber, etc. These approaches have been shown to improve the physiochemical and pharmacokinetic properties of encapsulated drugs. Lately, pharmacokinetic-pharmacodynamic (PK-PD) computational modeling has emerged as a beneficial tool for analyzing the impact of formulation and system-specific factors on the target disposition and therapeutic efficacy of liposomal drugs. There has been an increasing number of liposome-based therapeutic drugs, both FDA approved and those undergoing clinical trials, having application in cancer, Alzheimer's, diabetes, and glaucoma. To meet the continuous demand of health sectors and to produce the desired product, it is important to perform pharmacokinetic studies. This review focuses on the physical, physicochemical, and chemical factors of drugs that influence the target delivery of drugs. It also explains various physiological barriers, such as systemic clearance and extravasation. A novel approach, liposomal-hybrid complex, an innovative approach as a vesicular drug delivery system to overcome limited membrane permeability and bioavailability, has been discussed in the review. Moreover, this review highlights the pharmacokinetic considerations and challenges of poorly absorbed drugs along with the applications of a liposomal delivery system in improving PKPD in various diseases, such as cancer, Alzheimer's, diabetes, and glaucoma.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Glaucoma , Neoplasias , Humanos , Lipossomos , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA