RESUMO
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.
Assuntos
COVID-19 , Células Dendríticas , Receptor 2 Toll-Like , Receptor 7 Toll-Like , COVID-19/imunologia , COVID-19/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Interleucina-6/imunologia , Neuropilina-1/imunologia , SARS-CoV-2 , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologiaRESUMO
DNA damage can be sensed as a danger-associated molecular pattern by the innate immune system. Here we find that keratinocytes and other human cells mount an innate immune response within hours of etoposide-induced DNA damage, which involves the DNA sensing adaptor STING but is independent of the cytosolic DNA receptor cGAS. This non-canonical activation of STING is mediated by the DNA binding protein IFI16, together with the DNA damage response factors ATM and PARP-1, resulting in the assembly of an alternative STING signaling complex that includes the tumor suppressor p53 and the E3 ubiquitin ligase TRAF6. TRAF6 catalyzes the formation of K63-linked ubiquitin chains on STING, leading to the activation of the transcription factor NF-κB and the induction of an alternative STING-dependent gene expression program. We propose that STING acts as a signaling hub that coordinates a transcriptional response depending on its mode of activation.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Núcleo Celular/genética , Dano ao DNA/genética , Proteínas de Membrana/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transdução de Sinais/genética , Linhagem Celular , Citosol/metabolismo , DNA/genética , Células HEK293 , Humanos , Imunidade Inata/genética , Queratinócitos/fisiologia , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.
Assuntos
Fusão Celular , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Interferon Tipo I/biossíntese , Fusão de Membrana , Proteínas de Membrana/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação Linfocitária , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Internalização do VírusRESUMO
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.
Assuntos
Nucleotidiltransferases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Sequestossoma-1/fisiologia , Animais , Autofagia , Linhagem Celular , DNA/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de SinaisRESUMO
HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNß and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established.
Assuntos
Linfócitos T CD4-Positivos , Repetição Terminal Longa de HIV/imunologia , HIV-1/fisiologia , Interferon-alfa/imunologia , Transcrição Gênica/imunologia , Latência Viral/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Células HEK293 , Humanos , NF-kappa B/imunologia , Fatores de Transcrição STAT/imunologiaRESUMO
The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.
Assuntos
Ácidos Graxos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lipoilação , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Células RAW 264.7RESUMO
The development of new immunomodulatory agents can impact various areas of medicine. In particular, compounds with the ability to modulate innate immunological pathways hold significant unexplored potential. Herein, we report a modular synthetic approach to the macrodiolide natural product (-)-vermiculine, an agent previously shown to possess diverse biological effects, including cytotoxic and immunosuppressive activity. The synthesis allows for a high degree of flexibility in modifying the macrocyclic framework, including the formation of all possible stereoisomers. In total, 18 analogues were prepared. Two analogues with minor structural modifications showed clearly enhanced cancer cell line selectivity and reduced toxicity. Moreover, these compounds possessed broad inhibitory activity against innate immunological pathways in human PBMCs, including the DNA-sensing cGAS-STING pathway. Initial mechanistic characterization suggests a surprising impairment of the STING-TBK1 interaction.
Assuntos
Fatores Imunológicos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Nucleotidiltransferases/antagonistas & inibidores , DNA/efeitos dos fármacos , DNA/metabolismo , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Lactonas/síntese química , Lactonas/química , Lactonas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/metabolismo , Conformação Molecular , Nucleotidiltransferases/metabolismoRESUMO
STUDY QUESTION: Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER: SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY: Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS: eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE: SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA: RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION: This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Assuntos
Decídua , Fibroblastos/citologia , Interleucina-11/fisiologia , Sêmen , Estudos Transversais , Decídua/fisiologia , Endometriose , Endométrio/citologia , Feminino , Humanos , Interleucina-11/genética , Síndrome do Ovário PolicísticoRESUMO
Among HIV-infected individuals, long-term nonprogressor (LTNP) patients experience slow CD4 T cell decline and almost undetectable viral load for several years after primary acquisition of HIV. Type I IFN has been suggested to play a pathogenic role in HIV pathogenesis, and therefore diminished IFN responses may underlie the LTNP phenotype. In this study, we examined the presence and possible immunological role of multiple homozygous single-nucleotide polymorphisms in the stimulator of IFN genes (STING) encoding gene TMEM173 involved in IFN induction and T cell proliferation in HIV LTNP patients. We identified LTNPs through the Danish HIV Cohort and performed genetic analysis by Sanger sequencing, covering the R71H-G230A-R293Q (HAQ) single-nucleotide polymorphisms in TMEM173 This was followed by investigation of STING mRNA and protein accumulation as well as innate immune responses and proliferation following STING stimulation and infection with replication-competent HIV in human blood-derived cells. We identified G230A-R293Q/G230A-R293Q and HAQ/HAQ homozygous TMEM173 variants in 2 out of 11 LTNP patients. None of the 11 noncontrollers on antiretroviral treatment were homozygous for these variants. We found decreased innate immune responses to DNA and HIV as well as reduced STING-dependent inhibition of CD4 T cell proliferation, particularly in the HAQ/HAQ HIV LTNP patients, compared with the age- and gender-matched noncontrollers on antiretroviral treatment. These findings suggest that homozygous HAQ STING variants contribute to reduced inhibition of CD4 T cell proliferation and a reduced immune response toward DNA and HIV, which might result in reduced levels of constitutive IFN production. Consequently, the HAQ/HAQ TMEM173 genotype may contribute to the slower disease progression characteristic of LTNPs.
Assuntos
Infecções por HIV/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Antirretrovirais/uso terapêutico , Linhagem Celular , Estudos de Coortes , Estudos Transversais , Feminino , Genótipo , Células HEK293 , Infecções por HIV/tratamento farmacológico , Sobreviventes de Longo Prazo ao HIV , HIV-1/efeitos dos fármacos , Homozigoto , Humanos , Imunidade Inata/genética , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Carga Viral/efeitos dos fármacosRESUMO
It is well understood that the STING signalling pathway is critical for generating a robust innate immune response to pathogens. Human and mouse STING signalling pathways are not identical, however. For example, mice lack IFI16, which has been proven important for the human STING pathway. Therefore, we investigated whether humanized mice are an appropriate experimental platform for exploring the human STING signalling cascade in vivo. We found that NOG mice reconstituted with human cord blood haematopoietic stem cells (humanized NOG mice) exhibit human STING signalling responses to an analogue of the cyclic di-nucleotide cGAMP. There was an increase in the proportions of monocytes in the lungs of mice receiving cGAMP analogue. The most robust levels of STING expression and STING-induced responses were observed in mice exhibiting the highest levels of human chimerization. Notably, differential levels of STING in lung versus spleen following cGAMP analogue treatment suggest that there are tissue-specific kinetics of STING activation and/or degradation in effector versus inductive sites. We also examined the mouse innate immune response to cGAMP analogue treatment. We detected that mouse cells in the immunodeficient NOG mice responded to the cGAMP analogue and they do so with distinct kinetics from the human response. In conclusion, humanized NOG mice represent a valuable experimental model for examining in vivo human STING responses.
Assuntos
Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologiaRESUMO
Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells-by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV-without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.
Assuntos
Linfócitos T CD4-Positivos/virologia , Fibroblastos/citologia , Infecções por HIV/transmissão , HIV-1/patogenicidade , Mucosa/virologia , Técnicas de Cocultura , Endométrio/citologia , Endométrio/virologia , Feminino , Citometria de Fluxo , Prepúcio do Pênis/citologia , Prepúcio do Pênis/virologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/virologia , Masculino , Mucosa/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Uretra/citologia , Uretra/virologiaRESUMO
Cytosolic DNA stimulates innate immune responses, including type I interferons (IFN), which have antiviral and immunomodulatory activities. Cyclic GMP-AMP synthase (cGAS) recognizes cytoplasmic DNA and signals via STING to induce IFN production. Despite the importance of DNA in innate immunity, the nature of the DNA that stimulates IFN production is not well described. Using low DNA concentrations, we show that dsDNA induces IFN in a length-dependent manner. This is observed over a wide length-span of DNA, ranging from the minimal stimulatory length to several kilobases, and is fully dependent on cGAS irrespective of DNA length. Importantly, in vitro studies reveal that long DNA activates recombinant human cGAS more efficiently than short DNA, showing that length-dependent DNA recognition is an intrinsic property of cGAS independent of accessory proteins. Collectively, this work identifies long DNA as the molecular entity stimulating the cGAS pathway upon cytosolic DNA challenge such as viral infections.
Assuntos
DNA/química , DNA/imunologia , Interferon Tipo I/biossíntese , Nucleotidiltransferases/metabolismo , Linhagem Celular , Citosol/imunologia , Citosol/metabolismo , DNA/genética , DNA/metabolismo , Ativação Enzimática , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Transdução de SinaisRESUMO
Listeria monocytogenes is a gram-positive facultative intracellular bacterium, which replicates in the cytoplasm of myeloid cells. Interferon ß (IFNß) has been reported to play an important role in the mechanisms underlying Listeria disease. Although studies in murine cells have proposed the bacteria-derived cyclic-di-AMP to be the key bacterial immunostimulatory molecule, the mechanism for IFNß expression during L. monocytogenes infection in human myeloid cells remains unknown. Here we report that in human macrophages, Listeria DNA rather than cyclic-di-AMP is stimulating the IFN response via a pathway dependent on the DNA sensors IFI16 and cGAS as well as the signalling adaptor molecule STING. Thus, Listeria DNA is a major trigger of IFNß expression in human myeloid cells and is sensed to activate a pathway dependent on IFI16, cGAS and STING.
Assuntos
Interações Hospedeiro-Patógeno , Interferon beta/metabolismo , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Animais , Células Cultivadas , Citosol/metabolismo , DNA Bacteriano/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de SinaisRESUMO
Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is limited knowledge about viruses targeting the innate DNA-sensing pathway, as well as how the innate system impacts on the latent reservoir of herpesvirus infections. In this article, we report that murine gammaherpesvirus 68 (MHV68), in contrast to α- and ß-herpesviruses, induces very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in the control of MHV68 infections in vivo. Similarly, Kaposi's sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA-sensing pathways. Interestingly, an MHV68 mutant lacking deubiquitinase (DUB) activity, embedded within the large tegument protein open reading frame (ORF)64, gained the capacity to stimulate the DNA-activated stimulator of IFN genes (STING) pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and absent in melanoma 2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which, instead, localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild-type, but not STING-deficient, mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA-sensing pathway, which, in the MHV68 model, facilitates establishment of infections.
Assuntos
DNA Viral/imunologia , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Latência Viral/imunologia , Animais , Citosol/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo RealRESUMO
α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury.
Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/toxicidade , Escherichia coli/metabolismo , Proteínas Hemolisinas/toxicidade , Monócitos/efeitos dos fármacos , Receptores Purinérgicos P2X/fisiologia , Toxinas Bacterianas/metabolismo , Morte Celular/efeitos dos fármacos , Citoplasma/metabolismo , Citotoxinas/metabolismo , Eritrócitos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidade , Exotoxinas/metabolismo , Exotoxinas/toxicidade , Proteínas Hemolisinas/metabolismo , Hemólise/fisiologia , Humanos , Monócitos/metabolismoRESUMO
BACKGROUND: Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC). RESULTS: Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau's of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2-CCR5 cells (range 79.7-97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8-72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC. CONCLUSIONS: The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.
Assuntos
Antagonistas dos Receptores CCR5/farmacologia , Cicloexanos/farmacologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Receptores CCR5/metabolismo , Triazóis/farmacologia , Terapia Antirretroviral de Alta Atividade , Antígenos CD4/metabolismo , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/fisiologia , Humanos , Maraviroc , Mutagênese , Fragmentos de Peptídeos/química , Internalização do VírusRESUMO
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Assuntos
Genitália Feminina/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Imunidade Inata/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Feminino , Genitália Feminina/virologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fosfoproteínas/imunologia , Receptores Toll-Like/imunologiaRESUMO
Keratinocytes are involved in protecting the body from infections and environmental challenges, but also in inflammatory conditions like psoriasis. DNA has emerged as a potent stimulator of innate immune responses, but there is largely no information of how keratinocytes respond to cytosolic DNA. In this study, we report that human keratinocytes are tolerant to cytoplasmic DNA. However, if treated with inflammatory cytokines, keratinocytes gained the capacity to respond to DNA through a mechanism antagonized by the antimicrobial peptide LL37, proposed to be involved in activation and regulation of skin inflammation. The DNA sensor IFN-inducible protein 16 (IFI16) colocalized with DNA and the signaling molecule stimulator of IFN genes (STING) in the cytoplasm only in cytokine-stimulated cells, correlating with recruitment of the essential kinase TANK-binding kinase 1. Moreover, IFI16 was essential for DNA-driven innate immune responses in keratinocytes. Finally, IFI16 was upregulated in psoriasis skin lesions and localized to the cytoplasm in a subpopulation of cells. Collectively, this work suggests that inflammatory environments in the skin can lead to breakdown of tolerance for DNA in keratinocytes, which could contribute to the development of inflammatory diseases.
Assuntos
Citocinas/imunologia , Citosol/imunologia , DNA/imunologia , Tolerância Imunológica , Queratinócitos/imunologia , Psoríase/imunologia , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/imunologia , Células Cultivadas , Feminino , Humanos , Queratinócitos/patologia , Masculino , Proteínas de Membrana/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Psoríase/patologia , Regulação para Cima/imunologiaRESUMO
Replication of lentiviruses generates different DNA forms, including RNA:DNA hybrids, ssDNA, and dsDNA. Nucleic acids stimulate innate immune responses, and pattern recognition receptors detecting dsDNA have been identified. However, sensors for ssDNA have not been reported, and the ability of RNA:DNA hybrids to stimulate innate immune responses is controversial. Using ssDNAs derived from HIV-1 proviral DNA, we report that this DNA form potently induces the expression of IFNs in primary human macrophages. This response was stimulated by stem regions in the DNA structure and was dependent on IFN-inducible protein 16 (IFI16), which bound immunostimulatory DNA directly and activated the stimulator of IFN genes -TANK-binding kinase 1 - IFN regulatory factors 3/7 (STING-TBK1-IRF3/7) pathway. Importantly, IFI16 colocalized and associated with lentiviral DNA in the cytoplasm in macrophages, and IFI16 knockdown in this cell type augmented lentiviral transduction and also HIV-1 replication. Thus, IFI16 is a sensor for DNA forms produced during the lentiviral replication cycle and regulates HIV-1 replication in macrophages.
Assuntos
DNA Viral/metabolismo , HIV-1/fisiologia , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/imunologia , Replicação Viral/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Hibridização in Situ Fluorescente , Macrófagos/metabolismo , Microscopia Confocal , Proteínas Nucleares/genética , Fosfoproteínas/genéticaRESUMO
Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.