Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957110

RESUMO

Titanium dioxide (TiO2) is used as a UV light absorber to protect wood matter from photodegradation. In this paper, interactions between wood and TiO2 coating are studied, and the efficiency of the coating is evaluated. For the experiments, two wood species were chosen: beech (Fagus sylvatica) and pine (Pinus sylvestris). Molecular and physical modifications in coated and uncoated wood exposed to UV radiation were investigated with Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and transmission electron microscopy (TEM). UV-VIS spectroscopy was used to describe the absorption of UV light by the TiO2 planar particles chosen for the experiment. It was demonstrated that TiO2 coating protects wood against photodegradation to a limited extent. TEM micrographs showed fissures in the wood matter around clusters of TiO2 particles in beech wood.

2.
Nanoscale ; 13(46): 19391-19398, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34532724

RESUMO

Transition metal dichalcogenides (TMDs) are an intriguing family of materials with large application potential in a variety of scientific fields ranging from electronics to electrocatalysis. Within this group of materials, MoS2 has been attracting a lot of scientific attention due to its chemical and physical properties. In this report, we studied the exfoliation of the largely unexplored 3R MoS2 polytype prepared by high-temperature, high-pressure synthesis. Bulk as well as sodium naphthalenide exfoliated materials were studied in terms of their quality and performance for the hydrogen evolution reaction (HER). The HER performance was benchmarked versus the commonly available 2H polytype. The reported results show that the 3R polytype is more suitable for the conversion of MoS2 into the metallic 1T phase, which was attributed to surface oxidation occurring in the 2H polytype. Higher content of the 1T phase then resulted in an overall lower overpotential of -0.25 V vs. RHE for the 3R polytype compared with the overpotential of -0.30 V for the 2H polytype. These results show that the 3R polytype might serve as a better starting point for the synthesis of highly active chemically exfoliated MoS2 catalysts for hydrogen evolution.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513841

RESUMO

This work deals with Cu-modified 1DTiO2 microrods (MRs) and their surface properties. The pristine lyophilized precursor Cu_1DTiO2, prepared by an environmentally friendly cryo-lyophilization method, was further annealed in the temperature interval from 500 to 950 °C. The microstructure of all samples was characterized by electron microscopy (SEM/EDS and HRTEM/SAED), X-ray powder diffraction (XRD), infrared spectroscopy, simultaneous DTA/TGA thermoanalytical measurement, and mass spectroscopy (MS). Special attention was paid to the surface structure and porosity. The 1D morphology of all annealed samples was preserved, but their surface roughness varied due to anatase-rutile phase transformation and the change of the nanocrystals habits due to nanocavities formation after releasing of confined ice-water. The introduction of 2 wt.% Cu as electronically active second species significantly reduced the direct bandgap of 1DTiO2 in comparison with undoped TiO2 and the standard Degussa TiO2_P25. All samples were tested for their UV absorption properties and H2 generation by PEC water splitting. We presented a detailed study on the surface characteristics of Cu doped 1DTiO2 MRs due to gain a better idea of their photocatalytic activity.

4.
Nanomaterials (Basel) ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34443766

RESUMO

CsPbBr3 nanocrystals have been identified as a highly promising material for various optoelectronic applications. However, they tend to coexist with Cs4PbBr6 phase when the reaction conditions are not controlled carefully. It is therefore imperative to understand how the presence of this phase affects the luminescence performance of CsPbBr3 nanocrystals. We synthesized a mixed CsPbBr3-Cs4PbBr6 sample, and compared its photo- and radioluminescence properties, including timing characteristics, to the performance of pure CsPbBr3 nanocrystals. The possibility of energy transfer between the two phases was also explored. We demonstrated that the presence of Cs4PbBr6 causes significant drop in radioluminescence intensity of CsPbBr3 nanocrystals, which can limit possible future applications of Cs4PbBr6-CsPbBr3 mixtures or composites as scintillation detectors.

5.
RSC Adv ; 9(50): 28946-28952, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528437

RESUMO

Heat treatment is needed to increase the luminescence intensity of ZnO:Ga particles, but it comes at the cost of higher particle agglomeration. Higher agglomeration results in low transparency of scintillating powder when embedded in a matrix and constitutes one of the biggest disadvantages, besides low light yield and low stopping power, of ZnO:Ga powder. Limiting ZnO:Ga particle size is therefore a key step in order to prepare highly luminescent and transparent composites with prospects for optical applications. In this work, SiO2 coating was successfully used to improve luminescence intensity or limitation of crystallite size growth during further annealing. Furthermore, ZnO:Ga and ZnO:Ga-SiO2 core-shells were embedded in a polystyrene matrix.

7.
J Photochem Photobiol B ; 179: 149-155, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29413988

RESUMO

A highly prospective drug for the X-ray induced photodynamic therapy (PDTX), LuAG:Pr3+@SiO2-PpIX nanocomposite, was successfully prepared by a three step process: photo-induced precipitation of the Lu3Al5O12:Pr3+ (LuAG:Pr3+) core, sol-gel technique for amorphous silica coating, and a biofunctionalization by attaching the protoporphyrin IX (PpIX) molecules. The synthesis procedure provides three-layer nanocomposite with uniform shells covering an intensely luminescent core. Room temperature radioluminescence (RT RL) spectra as well as photoluminescence (RT PL) steady-state and time resolved spectra of the material confirm the non-radiative energy transfer from the core Pr3+ ions to the PpIX outer layer. First, excitation of Pr3+ ions results in the red luminescence of PpIX. Second, the decay measurements exhibit clear evidence of mentioned non-radiative energy transfer (ET). The singlet oxygen generation in the system was demonstrated by the 3'-(p-aminophenyl) fluorescein (APF) chemical probe sensitive to the singlet oxygen presence. The RT PL spectra of an X-ray irradiated material with the APF probe manifest the formation of singlet oxygen due to which enhanced luminescence around 530 nm is observed. Quenching studies, using NaN3 as an 1O2 inhibitor, also confirm the presence of 1O2 in the system and rule out the parasitic reaction with OH radicals. To summarize, presented features of LuAG:Pr3+@SiO2-PpIX nanocomposite indicate its considerable potential for PDTX application.


Assuntos
Nanocompostos/química , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Transferência de Energia , Medições Luminescentes , Microscopia Eletrônica de Transmissão , Dióxido de Silício/química , Oxigênio Singlete/metabolismo
8.
Beilstein J Nanotechnol ; 9: 2960-2967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546993

RESUMO

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA