RESUMO
Ultrafast spin dynamics is crucial for the next-generation spintronic devices towards high-speed data processing. Here, we investigate the ultrafast spin dynamics of Neodymium/Ni80Fe20 (Nd/Py) bilayers by the time-resolved magneto-optical Kerr effect. The effective modulation of spin dynamics at Nd/Py interfaces is realized by an external magnetic field. The effective magnetic damping of Py increases with increasing Nd thickness, and a large spin mixing conductance (â¼19.35×1015â cm-2) at Nd/Py interface is obtained, representing the robust spin pumping effect by Nd/Py interface. The tuning effects are suppressed at a high magnetic field due to the reduced antiparallel magnetic moments at Nd/Py interface. Our results contribute to understanding ultrafast spin dynamics and spin transport behavior in high-speed spintronic devices.
RESUMO
Two-dimensional van der Waals (2D vdW) materials are widely used in spin-orbit torque (SOT) devices. Recent studies have demonstrated the low crystal symmetry and large spin Hall conductivity of 2D vdW ZrSe3, indicating its potential applications in low-power SOT devices. Here, we study the interfacial contribution of SOTs and current-induced magnetization switching in the ZrSe3/Py (Ni80Fe20) and ZrSe3/Cu/Py heterostructures. SOT efficiencies of samples are detected by the spin-torque ferromagnetic resonance (ST-FMR), and out-of-plane damping-like torque (τB) is observed. The ratio between τB and the field-like torque (τA) decreases from 0.175 to 0.138 when inserting 1 nm Cu at the interface and then drops to 0.001 when the thickness of Cu intercalation is 2 nm, indicating that Cu intercalation inhibits the τB component of SOT. Moreover, the SOT efficiency is increased from 3.05 to 5.21, which may be attributed to the Cu intercalation being beneficial to improve the interface between Py and ZrSe3. Theoretical calculation has shown that the Cu spacer can change the conductivity of ZrSe3 from semiconductor to conductor, thereby decreasing the Schottky barrier and increasing the transmission efficiency of the spin current. Furthermore, magneto-optical Kerr effect (MOKE) microscopy is employed to verify the current-driven magnetization switching in these structures. In comparison to the ZrSe3/Py bilayer, the critical current density of ZrSe3/Cu/Py is reduced when inserting 1 nm Cu, demonstrating the higher SOT efficiency and lower power consumption in ZrSe3/Cu/Py structures.
RESUMO
Magnonics is an emerging field within spintronics that focuses on developing novel magnetic devices capable of manipulating information through the modification of spin waves in nanostructures with submicron size. Here, we provide a confined magnetic rectangular element to modulate the standing spin waves, by changing the saturation magnetisation (MS), exchange constant (A), and the aspect ratio of rectangular magnetic elements via micromagnetic simulation. It is found that the bulk mode and the edge mode of the magnetic element form a hybrid with each other. With the decrease in MS, both the Kittel mode and the standing spin waves undergo a shift towards higher frequencies. On the contrary, as A decreases, the frequencies of standing spin waves become smaller, while the Kittel mode is almost unaffected. Moreover, when the length-to-width aspect ratio of the element is increased, standing spin waves along the width and length become split, leading to the observation of additional modes in the magnetic spectra. For each mode, the vibration style is discussed. These spin dynamic modes were further confirmed via FMR experiments, which agree well with the simulation results.