Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2202189119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653574

RESUMO

SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.

2.
Nano Lett ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173119

RESUMO

Binary rutile oxides of 5d metals such as IrO2 stand out in comparison to their 3d and 4d counterparts due to limited experimental studies, despite rich predicted quantum phenomena. Here, we investigate the electrical transport properties of IrO2 by engineering epitaxial thin films grown using hybrid molecular beam epitaxy. Our findings reveal phonon-limited carrier transport and thickness-dependent anisotropic in-plane resistance in IrO2 (110) films, the latter suggesting a complex relationship between strain relaxation and orbital hybridization. Magnetotransport measurements reveal a previously unobserved nonlinear Hall effect. A two-carrier analysis of this effect shows the presence of minority carriers with mobility exceeding 3000 cm2/(V s) at 1.8 K. These results point toward emergent properties in 5d metal oxides that can be controlled using dimensionality and epitaxial strain.

3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353910

RESUMO

Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing "stubborn" elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a "stubborn" element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 µΩ·cm, in RuO2 films. We further demonstrate, using SrRuO3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of "stubborn" materials, which have been of significant interest to the materials science and the condensed matter physics community.

4.
Nano Lett ; 21(10): 4357-4364, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973791

RESUMO

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition.

5.
Nano Lett ; 21(23): 10006-10011, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807629

RESUMO

Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide films and heterostructures. Here, magnetotransport is investigated in a nonmagnetic La-doped SrSnO3 film. A 12 nm La:SrSnO3/2 nm SrSnO3/GdScO3 (110) film with insulating behavior exhibited a robust hysteresis loop in the MR at T < 5 K accompanied by an anomaly at ∼±3 T at T < 2.5 K. Furthermore, MR with the field in-plane yielded a value exceeding 100% at 1.8 K. Using detailed temperature-, angle- and magnetic field-dependent resistance measurements, we illustrate the origin of hysteresis is not due to magnetism in the film but rather is associated with the magnetocaloric effect of the substrate. Given GdScO3 and similar substrates are commonly used, this work highlights the importance of thermal coupling to processes in the substrates which must be carefully accounted for in the data interpretation for heterostructures utilizing these substrates.

6.
Nano Lett ; 21(3): 1246-1252, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33263403

RESUMO

We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing "built-to-order" nanostructures for tailored optoelectronic functionalities.

7.
Nano Lett ; 19(12): 8920-8927, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702928

RESUMO

Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.

10.
Nano Lett ; 16(11): 6816-6822, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27736081

RESUMO

Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well-known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations, we have detected and characterized the atomic and electronic structures of a novel line defect in NdTiO3 perovskite. It appears in STEM images as a perovskite cell rotated by 45°. It consists of self-organized Ti-O vacancy lines replaced by Nd columns surrounding a central Ti-O octahedral chain containing Ti4+ ions, as opposed to Ti3+ in the host. The distinct Ti valence in this line defect introduces the possibility of engineering exotic conducting properties in a single preferred direction and tailoring novel desirable functionalities in this Mott insulator.

11.
Phys Rev Lett ; 117(10): 106803, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636487

RESUMO

Through systematic control of the Nd concentration, we show that the carrier density of the two-dimensional electron gas (2DEG) in SrTiO_{3}/NdTiO_{3}/SrTiO_{3}(001) can be modulated over a wide range. We also demonstrate that the NdTiO_{3} in heterojunctions without a SrTiO_{3} cap is degraded by oxygen absorption from air, resulting in the immobilization of donor electrons that could otherwise contribute to the 2DEG. This system is, thus, an ideal model to understand and control the insulator-to-metal transition in a 2DEG based on both environmental conditions and film-growth processing parameters.

12.
ACS Nano ; 18(8): 6348-6358, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38314696

RESUMO

The advancement in thin-film exfoliation for synthesizing oxide membranes has led to possibilities for creating artificially assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing for their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess an intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques such as molecular beam epitaxy (MBE). This is where easy-to-grow binary alkaline-earth-metal oxides with a rock salt crystal structure are useful. These oxides, which include (Mg, Ca, Sr, Ba)O, can be used as a sacrificial layer covering a much broader range of lattice parameters compared to conventional sacrificial layers and are easily dissolvable in deionized water. In this study, we show the epitaxial growth of the single-crystalline perovskite SrTiO3 (STO) on sacrificial layers consisting of crystalline SrO, BaO, and Ba1-xCaxO films, employing a hybrid MBE method. Our results highlight the rapid (≤5 min) dissolution of the sacrificial layer when immersed in deionized water, facilitating the fabrication of millimeter-sized STO membranes. Using high-resolution X-ray diffraction, atomic-force microscopy, scanning transmission electron microscopy, impedance spectroscopy, and scattering-type near-field optical microscopy (SNOM), we demonstrate single-crystalline STO membranes with bulk-like intrinsic dielectric properties. The employment of alkaline earth metal oxides as sacrificial layers is likely to simplify membrane synthesis, particularly with MBE, thus expanding the research and application possibilities.

13.
Nat Commun ; 14(1): 6005, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752136

RESUMO

Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO2 under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO2 according to a quantified radiolytic mechanism. Based on direct experimental observation, a "two-step rolling" model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom.

14.
ACS Nano ; 17(21): 20999-21005, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37708240

RESUMO

Controlling defect densities in SrRuO3 films is the cornerstone for probing the intricate relationship among its structural, electrical, and magnetic properties. We combine film growth, electrical transport, and magnetometry to demonstrate the adsorption-controlled growth of phase-pure, epitaxial, and stoichiometric SrRuO3 films on SrTiO3 (001) substrates using solid source metal-organic molecular beam epitaxy. Across the growth window, we show that the anomalous Hall curves arise from two distinct magnetic domains. Domains with similar anomalous Hall polarities generate the stepped feature observed within the growth window, and those with opposite polarities produce the hump-like feature present exclusively in the highly Ru-poor film. We achieve a residual resistivity ratio (RRR = ρ300K/ρ2K) of 87 in a 50 nm-thick, coherently strained, and stoichiometric SrRuO3 film, the highest reported value to date on SrTiO3 (001) substrates. We hypothesize further improvements in the RRR through strain engineering to control the tetragonal-to-orthorhombic phase transformation and the domain structure of SrRuO3 films.

15.
ACS Nano ; 17(17): 16912-16922, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638732

RESUMO

The alkaline earth stannates are touted for their wide band gaps and the highest room-temperature electron mobilities among all of the perovskite oxides. CaSnO3 has the highest measured band gap in this family and is thus a particularly promising ultrawide band gap semiconductor. However, discouraging results from previous theoretical studies and failed doping attempts had described this material as "undopable". Here we redeem CaSnO3 using hybrid molecular beam epitaxy, which provides an adsorption-controlled growth for the phase-pure, epitaxial, and stoichiometric CaSnO3 films. By introducing lanthanum (La) as an n-type dopant, we demonstrate the robust and predictable doping of CaSnO3 with free electron concentrations, n3D, from 3.3 × 1019 cm-3 to 1.6 × 1020 cm-3. The films exhibit a maximum room-temperature mobility of 42 cm2 V-1 s-1 at n3D = 3.3 × 1019 cm-3. Despite having a comparable radius as the host ion, La expands the lattice parameter. Using density functional calculations, this effect is attributed to the energy gain by lowering the conduction band upon volume expansion. Finally, we exploit robust doping by fabricating CaSnO3-based field-effect transistors. The transistors show promise for CaSnO3's high-voltage capabilities by exhibiting low off-state leakage below 2 × 10-5 mA/mm at a drain-source voltage of 100 V and on-off ratios exceeding 106. This work serves as a starting point for future studies on the semiconducting properties of CaSnO3 and many devices that could benefit from CaSnO3's exceptionally wide band gap.

16.
Nat Nanotechnol ; 18(9): 1005-1011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217765

RESUMO

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering.

17.
ACS Nano ; 16(6): 8812-8819, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436095

RESUMO

Monoclinic ß-Ga2O3, an ultra-wide bandgap semiconductor, has seen enormous activity in recent years. However, the fundamental study of the plasmon-phonon coupling that dictates electron transport properties has not been possible due to the difficulty in achieving higher carrier density (without introducing chemical disorder). Here, we report a highly reversible, electrostatic doping of ß-Ga2O3 films with tunable carrier densities using ion-gel-gated electric double-layer transistor configuration. Combining temperature-dependent Hall effect measurements, transport modeling, and comprehensive mobility calculations using ab initio based electron-phonon scattering rates, we demonstrate an increase in the room-temperature mobility to 201 cm2 V-1 s-1 followed by a surprising decrease with an increasing carrier density due to the plasmon-phonon coupling. The modeling and experimental data further reveal an important "antiscreening" (of electron-phonon interaction) effect arising from dynamic screening from the hybrid plasmon-phonon modes. Our calculations show that a significantly higher room-temperature mobility of 300 cm2 V-1 s-1 is possible if high electron densities (>1020 cm-3) with plasmon energies surpassing the highest energy LO mode can be realized. As Ga2O3 and other polar semiconductors play an important role in several device applications, the fundamental understanding of the plasmon-phonon coupling can lead to the enhancement of mobility by harnessing the dynamic screening of the electron-phonon interactions.

18.
Sci Adv ; 8(21): eabl5668, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613270

RESUMO

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.

19.
Sci Adv ; 8(51): eadd5328, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563139

RESUMO

The epitaxial growth of functional oxides using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining freestanding epitaxial nanomembranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically used in growing epitaxial oxides can damage graphene. Here, we demonstrate the successful use of hybrid molecular beam epitaxy for SrTiO3 growth that does not require an independent oxygen source, thus avoiding graphene damage. This approach produces epitaxial films with self-regulating cation stoichiometry. Furthermore, the film (46-nm-thick SrTiO3) can be exfoliated and transferred to foreign substrates. These results open the door to future studies of previously unattainable freestanding oxide nanomembranes grown in an adsorption-controlled manner by hybrid molecular beam epitaxy. This approach has potentially important implications for the commercial application of perovskite oxides in flexible electronics and as a dielectric in van der Waals thin-film electronics.

20.
Nat Mater ; 9(6): 482-4, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20364139

RESUMO

The study of quantum phenomena in semiconductors requires epitaxial structures with exceptionally high charge-carrier mobilities. Furthermore, low-temperature mobilities are highly sensitive probes of the quality of epitaxial layers, because they are limited by impurity and defect scattering. Unlike many other complex oxides, electron-doped SrTiO(3) single crystals show high (approximately 10(4) cm(2) V(-1) s(-1)) electron mobilities at low temperatures. High-mobility, epitaxial heterostructures with SrTiO(3) have recently attracted attention for thermoelectric applications, field-induced superconductivity and two-dimensional (2D) interface conductivity. Epitaxial SrTiO(3) thin films are often deposited by energetic techniques, such as pulsed laser deposition. Electron mobilities in such films are lower than those of single crystals. In semiconductor physics, molecular beam epitaxy (MBE) is widely established as the deposition method that produces the highest mobility structures. It is a low-energetic, high-purity technique that allows for low defect densities and precise control over doping concentrations and location. Here, we demonstrate controlled doping of epitaxial SrTiO(3) layers grown by MBE. Electron mobilities in these films exceed those of single crystals. At low temperatures, the films show Shubnikov-de Haas oscillations. These high-mobility SrTiO(3) films allow for the study of the intrinsic physics of SrTiO(3) and can serve as building blocks for high-mobility oxide heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA