Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 28(33): 12182-90, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22838385

RESUMO

Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 µg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in <010> directions was inhibited only marginally by 1 µg/mL poly-glu, while growth in <100> directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 µg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 µg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 µg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.


Assuntos
Biomimética/métodos , Oxalato de Cálcio/química , Ácido Poliglutâmico/química , Adsorção , Cristalização , Cinética , Microscopia Confocal , Conformação Molecular , Simulação de Dinâmica Molecular
2.
J Am Chem Soc ; 133(45): 18406-12, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21961692

RESUMO

Mice lacking the gene encoding matrix gla protein (MGP) exhibit massive mineral deposition in blood vessels and die soon after birth. We hypothesize that MGP prevents arterial calcification by adsorbing to growing hydroxyapatite (HA) crystals. To test this, we have used a combined experimental-computational approach. We synthesized peptides covering the entire sequence of human MGP, which contains three sites of serine phosphorylation and five sites of γ-carboxylation, and studied their effects on HA crystal growth using a constant-composition autotitration assay. In parallel studies, the interactions of these sequences with the {100} and {001} faces of HA were analyzed using atomistic molecular dynamics (MD) simulations. YGlapS (amino acids 1-14 of human MGP) and SK-Gla (MGP43-56) adsorbed rapidly to the {100} and {001} faces and strongly inhibited HA growth (IC(50) = 2.96 µg/mL and 4.96 µg/mL, respectively). QR-Gla (MGP29-42) adsorbed more slowly and was a moderate growth inhibitor, while the remaining three (nonpost-translationally modified) peptides had little or no effect in either analysis. Substitution of gla with glutamic acid reduced the adsorption and inhibition activities of SK-Gla and (to a lesser extent) QR-Gla but not YGlapS; substitution of phosphoserine with serine reduced the inhibitory potency of YGlapS. These studies suggest that MGP prevents arterial calcification by a direct interaction with HA crystals that involves both phosphate groups and gla residues of the protein. The strong correlation between simulated adsorption and measured growth inhibition indicates that MD provides a powerful tool to predict the effects of proteins and peptides on crystal formation.


Assuntos
Calcinose/prevenção & controle , Proteínas de Ligação ao Cálcio/química , Durapatita/química , Proteínas da Matriz Extracelular/química , Adsorção , Proteínas de Ligação ao Cálcio/síntese química , Cristalização , Proteínas da Matriz Extracelular/síntese química , Humanos , Simulação de Dinâmica Molecular , Proteína de Matriz Gla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA