Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 193: 105448, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248017

RESUMO

Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 µg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 µg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 µg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 µg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 µg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Spodoptera , Ecossistema , Estágios do Ciclo de Vida , Larva
2.
Ecotoxicol Environ Saf ; 172: 216-224, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710772

RESUMO

Indiscriminate use of insecticides/pesticides affects the structure and function of the ecosystems. The present study was aimed to investigate the toxic potential of Fipronil (a second generation phenylpyrazole) using Spodoptera litura larvae (Lepidoptera: Noctuidae) as an experimental model. Commercial grade of Fipronil, an insecticide was fed (20-80 mg/L) to the 4th instar larvae of S. litura for 12-72 h and examined different molecular, biochemical and organismal parameters. We observed a significant dose- and time-dependent changes in the biochemical parameters such as Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Catalase (CAT), level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) and Thiobarbituric Acid Reactive Substances (TBARS) [Malondialdehyde (MDA) equivalent] in the exposed larvae. We also observed that Fipronil interacts with DNA. Next, we examined the influence of sub-cellular damages at the organismal level. The alterations in the parameter such as the delayed emergence of larvae, reduced fecundity, fertility and increased rate of malformation in pupae and adults indicate the sub-organismal damages influence at the organismal level. The findings of the present study suggest that discriminatory non-scientific use of insecticide/pesticide might influence the population dynamics of insects and in large ecosystem too and needs further thorough investigations.


Assuntos
Inseticidas/toxicidade , Pirazóis/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Catalase/metabolismo , DNA/química , Fertilidade/efeitos dos fármacos , Glutationa Transferase/metabolismo , Inseticidas/química , Larva/efeitos dos fármacos , Larva/metabolismo , Pirazóis/química , Spodoptera/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Saudi J Biol Sci ; 29(4): 2262-2269, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531189

RESUMO

Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700-3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.

4.
Saudi J Biol Sci ; 28(9): 4884-4890, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466062

RESUMO

Moths are phytophagous, cosmopolitan, agricultural pests, night pollinators, chiefly nocturnal and potential bio-indicators. The current study will be the first report on species diversity, species composition, abundance, and distributional pattern of moth fauna in Aravalli Hill Range Rajasthan. During the survey period of 2018-2019, 758 specimens of moths were collected pertaining to 34 species, 26 genera belonging to 05 families, and 13 subfamilies from three different sites of Aravalli Hill Range. Based on the number of genera, family Sphingidae was most dominant with 9 genera, and family Crambidae was least dominant with 2 genera. Based on the number of species, the family Sphingidae was the most dominant, representing 13 species, followed by Erebidae representing 11 species, Saturniidae and Noctuidae with 4 species each, the least dominant was Crambidae with 2 species. The diversity indices for moths have been calculated for the first time from the Aravalli Range of Rajasthan. Across the survey, Simpson's Diversity Index (D'), Shannon Diversity Index (H'), Dominance & Evenness was calculated as 0.95, 3.3, 0.04, and 0.8, respectively, which reflects that moth fauna is diverse in the surveyed areas.

5.
Chemosphere ; 254: 126875, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32361544

RESUMO

In the present scenario, insecticides/pesticides are used intensively to control the various insect pests. Indiscriminate use of these insecticides/pesticides affects the structure and function of the ecosystem. In this context, a thorough toxicological study of each insecticide/pesticide is a must to understand the hazardous effect of these chemicals on the target and non-target organisms. The present study was aimed to understand the hazardous effect of thiamethoxam against the Spodoptera litura. Different concentrations (20-80 µg/mL) of thiamethoxam were prepared, and fourth instar larvae of S. litura were allowed to feed for 12-72 h. We first examined the interaction of thiamethoxam with DNA. Next, treated and non-treated larvae were assessed for different biological parameters such as mortality, emergence, fecundity, fertility, longevities, and biochemical parameters. Our result showed that thiamethoxam directly interacts with the DNA and significantly influenced the different biological and biochemical parameters of exposed the organisms. We observed a significant change in stress enzymes such as SOD, CAT, and GST. A similar observation was also made with the oxidative marker for lipid damage, MDA and DNA damage, 8-OHdG, respectively. In conclusion, our results suggest that improper use of synthetic chemical insecticides influenced both biological and biochemical parameters through oxidative stress and probably damage the genetic material.


Assuntos
DNA/efeitos dos fármacos , Inseticidas/toxicidade , Tiametoxam/toxicidade , Animais , Dano ao DNA , Ecossistema , Insetos , Larva/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/farmacologia , Spodoptera/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA