Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Orig Life Evol Biosph ; 49(3): 111-145, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31399826

RESUMO

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.


Assuntos
Biologia/história , Química/história , Historiografia , Informática/história , Origem da Vida , Paleontologia/história , Filosofia/história , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Biologia Molecular/história
2.
Biosystems ; 244: 105297, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154841

RESUMO

Symbolic systems (SSs) are uniquely products of living systems, such that symbolism and life may be inextricably intertwined phenomena. Within a given SS, there is a range of symbol complexity over which signaling is functionally optimized. This range exists relative to a complex and potentially infinitely large background of latent, unused symbol space. Understanding how symbol sets sample this latent space is relevant to diverse fields including biochemistry and linguistics. We quantitatively explored the graphic complexity of two biosemiotic systems: genetically encoded amino acids (GEAAs) and written language. Molecular and graphical notions of complexity are highly correlated for GEAAs and written language. Symbol sets are generally neither minimally nor maximally complex relative to their latent spaces, but exist across an objectively definable distribution, with the GEAAs having especially low complexity. The selection pressures guiding these disparate systems are explicable by symbol production and disambiguation efficiency. These selection pressures may be universal, offer a quantifiable metric for comparison, and suggest that all life in the Universe may discover optimal symbol set complexity distributions with respect to their latent spaces. If so, the "complexity" of individual components of SSs may not be as strong a biomarker as symbol set complexity distribution.


Assuntos
Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Simbolismo , Humanos , Idioma , Redação , Linguística
3.
JACS Au ; 3(9): 2522-2535, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772180

RESUMO

Carbohydrate biosynthesis is fundamental to modern terrestrial biochemistry, but how this collection of metabolic pathways originated remains an open question. Prebiotic sugar synthesis has focused primarily on the formose reaction and Kiliani-Fischer homologation; however, how they can transition to extant biochemical pathways has not been studied. Herein, a nonenzymatic pathway for pentose production with similar chemical transformations as those of the pentose phosphate pathway is demonstrated. Starting from a C6 aldonate, namely, gluconate, nonselective chemical oxidation yields a mixture of 2-oxo-, 4-oxo-, 5-oxo-, and 6-oxo-uronate regioisomers. Regardless at which carbinol the oxidation takes place, carbonyl migration enables ß-decarboxylation to yield pentoses. In comparison, the pentose phosphate pathway selectively oxidizes 6-phosphogluconate to afford the 3-oxo-uronate derivative, which undergoes facile subsequent ß-decarboxylation and carbonyl migration to afford ribose 5-phosphate. The similarities between these two pathways and the potential implications for prebiotic chemistry and protometabolism are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA