Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(20): 207206, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864320

RESUMO

The nontrivial feature and penetration depth of the topological surface states (TSS) in SmB_{6} were studied via spin pumping. The experiments used SmB_{6} thin films grown on the bulk magnetic insulator Y_{3}Fe_{5}O_{12} (YIG). Upon the excitation of magnetization precession in the YIG, a spin current is generated in the SmB_{6} that produces, via spin-orbit coupling, a lateral electrical voltage in the film. This spin-pumping voltage signal becomes considerably stronger as the temperature decreases from 150 to 10 K, and such an enhancement most likely originates from the spin-momentum locking of the TSS and may thereby serve as evidence for the nontrivial nature of the TSS. The voltage data also show a unique film thickness dependence that suggests a TSS depth of ∼32 nm. The spin-pumping results are supported by transport measurements and analyses using a tight binding model.

2.
Phys Rev Lett ; 119(2): 024101, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753356

RESUMO

The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y_{3}Fe_{5}O_{12} thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA