Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175880

RESUMO

Severe obesity (SO) can accelerate atherosclerosis and the onset of acute cardiovascular events. The diagnosis of atherosclerosis in the context of a high body mass index (BMI) can be challenging, making the identification of biomarkers clinically relevant. We aimed to assess the usefulness of irisin as a biomarker for subclinical atherosclerosis in participants with SO. This prospective observational study included 61 participants undergoing bariatric surgery for SO, defined as a BMI >40 kg/m2 or >35 kg/m2 with at least one comorbidity. Atherosclerotic plaques were detected by ultrasound. Plasma samples were obtained 1 month before and at 6 and 12 months after bariatric surgery to measure irisin by ELISA. Additionally, subcutaneous samples of adipose tissue were taken and genotyped to identify irisin polymorphism rs3480. Irisin levels were positively correlated with BMI (r = 0.23, p = 0.0064), negatively correlated with atheroma-related parameters (e.g., carotid intima-media thickness), and lower in subjects with atheroma (p < 0.0002). Irisin also showed good overall accuracy for discriminating plaque presence (AUC, 0.81; 95% CI, 0.6956-0.9156). However, the rs3480 polymorphism correlated with neither the irisin levels nor the presence of atheromas. Iirisin could identify subclinical atherosclerosis in SO and might facilitate clinical diagnosis.


Assuntos
Aterosclerose , Obesidade Mórbida , Placa Aterosclerótica , Humanos , Obesidade Mórbida/complicações , Obesidade Mórbida/genética , Fibronectinas/genética , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/genética , Espessura Intima-Media Carotídea , Obesidade , Aterosclerose/diagnóstico , Aterosclerose/genética , Biomarcadores
2.
Org Biomol Chem ; 19(42): 9154-9162, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642722

RESUMO

(-)-Arctigenin and a series of new analogues have been synthesised and then tested for their potential as AMPA and kainate receptor antagonists of human homomeric GluA1 and GluK2 receptors expressed in HEK293 cells using a Ca2+ influx assay. In general, these compounds showed antagonist activity at both receptors with greater activity evident at AMPARs. Schild analysis indicates that a spirocyclic analogue 6c acts as a non-competitive antagonist. Molecular docking studies in which 6c was docked into the X-ray crystal structure of the GluA2 tetramer suggest that (-)-arctigenin and its analogues bind in the transmembrane domain in a similar manner to the known AMPA receptor non-competitive antagonists GYKI53655 and the antiepileptic drug perampanel. The arctigenin derivatives described herein may serve as novel leads for the development of drugs for the treatment of epilepsy.


Assuntos
Receptores de Ácido Caínico
3.
Neurochem Res ; 44(3): 585-599, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302614

RESUMO

Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1-3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1-3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1-3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels.


Assuntos
Sítios de Ligação , Ligantes , Transporte Proteico/fisiologia , Receptores de Ácido Caínico/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Mutação/genética , Multimerização Proteica/fisiologia , Subunidades Proteicas/metabolismo , Receptores de Ácido Caínico/genética
4.
J Biol Chem ; 292(12): 5031-5042, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174298

RESUMO

Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.


Assuntos
Hiperecplexia/genética , Mutação Puntual , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Glicina/metabolismo , Células HEK293 , Humanos , Hiperecplexia/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptores de Glicina/química , Sarcosina/metabolismo , Alinhamento de Sequência
5.
Hippocampus ; 25(11): 1407-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25821051

RESUMO

The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo.


Assuntos
Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Ácido Caínico/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
7.
Cryo Letters ; 35(2): 154-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24869648

RESUMO

BACKGROUND: New knowledge about crystallization vs. lipid-to-gel transition has surfaced recently, since some of the latest publications on lipocryolysis have focused on its action mechanism. As a result, new opportunities for technical improvements and clinical outcome optimization have opened up. The food industry has been working with lipid crystal polymorphisms for decades, and tempering seems to be the easiest method of external conditioning, in addition to being harmless. OBJECTIVE: Evaluate if pre and post lipocryolyisis thermic conditioning enhances rat adipocyte destruction. METHODS: Several temperature treatment patterns (TTP) were applied to isolated rat adipocytes. The survival of the adipocytes exposed to the different TTPs and the formation of crystals in the surviving adipocytes were assessed and analyzed. RESULT: Pre and post lipocryolysis thermic conditioning changed lipocryolyisis crystallization process and showed an enhancement in adipocyte destruction that could represent an important step in improving clinical results. CONCLUSIONS: pre and post lipocryolyisis thermic conditioning enhances rat adipocyte destruction.


Assuntos
Adipócitos/citologia , Tecido Adiposo Branco/citologia , Lipídeos de Membrana/química , Adipócitos/química , Tecido Adiposo Branco/química , Animais , Morte Celular , Sobrevivência Celular , Temperatura Baixa , Cristalização , Temperatura Alta , Masculino , Transição de Fase , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230484, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853552

RESUMO

Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/genética , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Abrigo para Animais , Medo
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230239, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853568

RESUMO

N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Região CA1 Hipocampal , Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Potenciação de Longa Duração/fisiologia , Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Hipocampo/fisiologia
10.
J Physiol ; 591(4): 955-72, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23230236

RESUMO

Potentiation at synapses between CA3 and the CA1 pyramidal neurons comprises both transient and sustained phases, commonly referred to as short-term potentiation (STP or transient LTP) and long-term potentiation (LTP), respectively. Here, we utilized four subtype-selective N-methyl-d-aspartate receptor (NMDAR) antagonists to investigate whether the induction of STP and LTP is dependent on the activation of different NMDAR subtypes. We find that the induction of LTP involves the activation of NMDARs containing both the GluN2A and the GluN2B subunits. Surprisingly, however, we find that STP can be separated into two components, the major form of which involves activation of NMDARs containing both GluN2B and GluN2D subunits. These data demonstrate that synaptic potentiation at CA1 synapses is more complex than is commonly thought, an observation that has major implications for understanding the role of NMDARs in cognition.


Assuntos
Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
11.
Front Physiol ; 14: 1271149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916217

RESUMO

Lipoprotein lipase (LPL) is responsible for the intravascular catabolism of triglyceride-rich lipoproteins and plays a central role in whole-body energy balance and lipid homeostasis. As such, LPL is subject to tissue-specific regulation in different physiological conditions, but the mechanisms of this regulation remain incompletely characterized. Previous work revealed that LPL comprises a set of proteoforms with different isoelectric points, but their regulation and functional significance have not been studied thus far. Here we studied the distribution of LPL proteoforms in different rat tissues and their regulation under physiological conditions. First, analysis by two-dimensional electrophoresis and Western blot showed different patterns of LPL proteoforms (i.e., different pI or relative abundance of LPL proteoforms) in different rat tissues under basal conditions, which could be related to the tissue-specific regulation of the enzyme. Next, the comparison of LPL proteoforms from heart and brown adipose tissue between adults and 15-day-old rat pups, two conditions with minimal regulation of LPL in these tissues, yielded virtually the same tissue-specific patterns of LPL proteoforms. In contrast, the pronounced downregulation of LPL activity observed in white adipose tissue during fasting is accompanied by a prominent reconfiguration of the LPL proteoform pattern. Furthermore, refeeding reverts this downregulation of LPL activity and restores the pattern of LPL proteoforms in this tissue. Importantly, this reversible proteoform-specific regulation during fasting and refeeding indicates that LPL proteoforms are functionally diverse. Further investigation of potential differences in the functional properties of LPL proteoforms showed that all proteoforms exhibit lipolytic activity and have similar heparin-binding affinity, although other functional aspects remain to be investigated. Overall, this study demonstrates the ubiquity, differential distribution and specific regulation of LPL proteoforms in rat tissues and underscores the need to consider the existence of LPL proteoforms for a complete understanding of LPL regulation under physiological conditions.

12.
Hippocampus ; 22(3): 555-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21365713

RESUMO

Oscillatory network activity in cortical areas is seen as vital to physiological processes of cognition, learning, and memory, and fundamental to disorders such as epilepsy. Increasing attention is being paid to the role of kainate receptors (KAr) in the generation of network oscillations and synchrony. The entorhinal cortex (EC) plays a key role in learning and memory, and is a major site of dysfunction in temporal lobe epilepsy. KAr have been implicated in oscillogenesis in the EC, but limited information is available concerning the physiological roles of KAr in synaptic transmission in this area. Here, we make a detailed analysis of KAr function in Layer III of the EC, a site known to be highly susceptible to oscillogenesis, using whole-cell patch clamp recording of evoked and spontaneous synaptic currents in rat brain slices. We demonstrate that KAr containing the GluK1-subunit act as facilitatory autoreceptors at glutamatergic synapses on pyramidal neurones in Layer III. In addition, GluK1-containing KAr mediate an excitatory drive at glutamatergic synapses on GABAergic interneurones. In contrast, a different KAr, which is likely to contain the GluK2-subunit mediates a slow postsynaptic excitation at glutamatergic synapses on principal neurones, and may also act as a heteroreceptor, facilitating GABA release at inhibitory terminals on principal neurones. Reducing [Mg(2+) ](o) , which we have previously shown can generate KAr-dependent slow network oscillations in Layer III, enhances both glutamate and GABA release. Both effects are partly sustained by increased activation of GluK1-containing KAr. Increased activation of the GluK1-containing autoreceptor also results in an enhancement of the postsynaptic response mediated by GluK2-containing receptors. Finally, spontaneous release of both transmitters shows a rhythmic periodicity in low-Mg, and, again, this is dependent on GluK1-containing KAr. The results show that KAr contribute a facilitatory function at multiple levels in the networks of the EC, and provide a basis for dissecting the role of these receptors in oscillogenesis in this area.


Assuntos
Córtex Entorrinal/fisiologia , Ácido Glutâmico/metabolismo , Receptores de Ácido Caínico/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Córtex Entorrinal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores de Ácido Caínico/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
13.
J Biol Chem ; 285(35): 27067-27077, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20562108

RESUMO

Activation of small conductance calcium-activated potassium (K(Ca)2) channels can regulate neuronal firing and synaptic plasticity. They are characterized by their high sensitivity to the bee venom toxin apamin, but the mechanism of block is not understood. For example, apamin binds to both K(Ca)2.2 and K(Ca)2.3 with the same high affinity (K(D) approximately 5 pM for both subtypes) but requires significantly higher concentrations to block functional current (IC(50) values of approximately 100 pM and approximately 5 nM, respectively). This suggests that steps beyond binding are needed for channel block to occur. We have combined patch clamp and binding experiments on cell lines with molecular modeling and mutagenesis to gain more insight into the mechanism of action of the toxin. An outer pore histidine residue common to both subtypes was found to be critical for both binding and block by the toxin but not for block by tetraethylammonium (TEA) ions. These data indicated that apamin blocks K(Ca)2 channels by binding to a site distinct from that used by TEA, supported by a finding that the onset of block by apamin was not affected by the presence of TEA. Structural modeling of ligand-channel interaction indicated that TEA binds deep within the channel pore, which contrasted with apamin being modeled to interact with the channel outer pore by utilizing the outer pore histidine residue. This multidisciplinary approach suggested that apamin does not behave as a classical pore blocker but blocks using an allosteric mechanism that is consistent with observed differences between binding affinity and potency of block.


Assuntos
Apamina/farmacologia , Modelos Moleculares , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Sítio Alostérico/genética , Animais , Apamina/química , Abelhas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/química , Ligação Proteica/efeitos dos fármacos , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Tetraetilamônio/farmacologia
14.
Neuropharmacology ; 201: 108818, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610288

RESUMO

N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792. This compound displays partial subtype-selectivity by having a varied maximal inhibition of GluN2A-, GluN2B-, GluN2C-, and GluN2D-containing receptors (52%, 70%, 87%, 89%, respectively) with IC50s 4-10 µM. UBP792 inhibited NMDAR responses by reducing l-glutamate and glycine potencies and efficacies. Consistent with non-competitive inhibition, increasing agonist concentrations 30-fold did not reduce UBP792 potency. UBP792 inhibition was also not competitive with the structurally-related positive allosteric modulator (PAM) UBP684. UBP792 activity was voltage-independent, unaffected by GluN1's exon-5, and reduced at low pH (except for GluN1/GluN2A receptors which were more sensitive at acidic pH). UBP792 binding appeared independent of agonist binding and may be entering the plasma membrane to gain access to its binding site. Inhibition by UBP792 is reduced when the ligand-binding domain (LBD) of the GluN2 subunit, but not that of the GluN1 subunit, is cross-linked in the closed-cleft, activated conformation. Thus, UBP792 may be inhibiting by stabilizing an open GluN2-LBD cleft associated with channel inactivation or by stabilizing downstream closed channel conformations allosterically-coupled to the GluN2-LBD. These findings further expand the repertoire displayed by NMDAR NAMs thus expanding the opportunities for developing NMDAR modulators with the most appropriate selectivity and physiological actions for specific therapeutic indications.


Assuntos
Ácidos Carboxílicos , Naftalenos , Fármacos Neuroprotetores , Receptores de N-Metil-D-Aspartato , Animais , Regulação Alostérica , Sítios de Ligação , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Glicina , Naftalenos/química , Naftalenos/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oócitos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus
15.
Neuropharmacology ; 201: 108833, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637787

RESUMO

The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.


Assuntos
Hipocampo , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Animais , Hipocampo/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Receptores de GABA , Receptores de N-Metil-D-Aspartato/fisiologia , Fenantrenos/farmacologia
16.
Mol Pharmacol ; 78(6): 1036-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837679

RESUMO

Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and different combinations of subunits confer different properties to KARs. Here we report the characterization of a new GluK1 subunit-selective radiolabeled antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione ([(3)H]UBP310) using human recombinant KARs. [(3)H]UBP310 binds to GluK1 with low nanomolar affinity (K(D) = 21 ± 7 nM) but shows no specific binding to GluK2. However, [(3)H]UBP310 also binds to GluK3 (K(D) = 0.65 ± 0.19 µM) but with ~30-fold lower affinity than that observed for GluK1. Competition [(3)H]UBP310 binding experiments on GluK1 revealed the same rank order of affinity of known GluK1-selective ligands as reported previously in functional assays. Nonconserved residues in GluK1-3 adjudged in modeling studies to be important in determining the GluK1 selectivity of UBP310 were point-mutated to switch residues between subunits. None of the mutations altered the expression or trafficking of KAR subunits. Whereas GluK1-T503A mutation diminished [(3)H]UBP310 binding, GluK2-A487T mutation rescued it. Likewise, whereas GluK1-N705S/S706N mutation decreased, GluK3-N691S mutation increased [(3)H]UBP310 binding activity. These data show that Ala487 in GluK2 and Asn691 in GluK3 are important determinants in reducing the affinity of UBP310 for these subunits. Insights from these modeling and point mutation studies will aid the development of new subunit-selective KAR antagonists.


Assuntos
Alanina/análogos & derivados , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/metabolismo , Timina/análogos & derivados , Alanina/química , Alanina/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação/fisiologia , Ligação Competitiva/genética , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes , Mutação Puntual/genética , Subunidades Proteicas/genética , Prótons , Ratos , Ratos Wistar , Receptores de Ácido Caínico/genética , Timina/química , Timina/metabolismo
17.
J Pharmacol Exp Ther ; 335(3): 614-21, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20858708

RESUMO

The N-methyl-D-aspartate (NMDA) receptor family regulates various central nervous system functions, such as synaptic plasticity. However, hypo- or hyperactivation of NMDA receptors is critically involved in many neurological and psychiatric conditions, such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Consequently, subtype-selective positive and negative modulators of NMDA receptor function have many potential therapeutic applications not addressed by currently available compounds. We have identified allosteric modulators with several novel patterns of NMDA receptor subtype selectivity that have a novel mechanism of action. In a series of carboxylated naphthalene and phenanthrene derivatives, compounds were identified that selectively potentiate responses at GluN1/GluN2A [e.g., 9-iodophenanthrene-3-carboxylic acid (UBP512)]; GluN1/GluN2A and GluN1/GluN2B [9-cyclopropylphenanthrene-3-carboxylic acid (UBP710)]; GluN1/GluN2D [3,5-dihydroxynaphthalene-2-carboxylic acid (UBP551)]; or GluN1/GluN2C and GluN1/GluN2D receptors [6-, 7-, 8-, and 9-nitro isomers of naphth[1,2-c][1,2,5]oxadiazole-5-sulfonic acid (NSC339614)] and have no effect or inhibit responses at the other NMDA receptors. Selective inhibition was also observed; UBP512 inhibits only GluN1/GluN2C and GluN1/GluN2D receptors, whereas 6-bromo-2-oxo-2H-chromene-3-carboxylic acid (UBP608) inhibits GluN1/GluN2A receptors with a 23-fold selectivity compared with GluN1/GluN2D receptors. The actions of these compounds were not competitive with the agonists L-glutamate or glycine and were not voltage-dependent. Whereas the N-terminal regulatory domain was not necessary for activity of either potentiators or inhibitors, segment 2 of the agonist ligand-binding domain was important for potentiating activity, whereas subtype-specific inhibitory activity was dependent upon segment 1. In terms of chemical structure, activity profile, and mechanism of action, these modulators represent a new class of pharmacological agents for the study of NMDA receptor subtype function and provide novel lead compounds for a variety of neurological disorders.


Assuntos
Moduladores de Transporte de Membrana/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação/fisiologia , Ligação Competitiva , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Humanos , Moduladores de Transporte de Membrana/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , RNA Complementar/administração & dosagem , RNA Complementar/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Deleção de Sequência/fisiologia , Xenopus laevis
18.
Nat Commun ; 11(1): 423, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969570

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) play critical roles in the central nervous system. Their heterotetrameric composition generates subtypes with distinct functional properties and spatio-temporal distribution in the brain, raising the possibility for subtype-specific targeting by pharmacological means for treatment of neurological diseases. While specific compounds for GluN2A and GluN2B-containing NMDARs are well established, those that target GluN2C and GluN2D are currently underdeveloped with low potency and uncharacterized binding modes. Here, using electrophysiology and X-ray crystallography, we show that UBP791 ((2S*,3R*)-1-(7-(2-carboxyethyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) inhibits GluN2C/2D with 40-fold selectivity over GluN2A-containing receptors, and that a methionine and a lysine residue in the ligand binding pocket (GluN2D-Met763/Lys766, GluN2C-Met736/Lys739) are the critical molecular elements for the subtype-specific binding. These findings led to development of UBP1700 ((2S*,3R*)-1-(7-(2-carboxyvinyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) which shows over 50-fold GluN2C/2D-selectivity over GluN2A with potencies in the low nanomolar range. Our study shows that the L-glutamate binding site can be targeted for GluN2C/2D-specific inhibition.


Assuntos
Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Animais , Sítios de Ligação , Ligação Competitiva , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis
19.
Surg Obes Relat Dis ; 16(12): 1961-1970, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32933868

RESUMO

BACKGROUND: Inflammation and endothelial dysfunction are associated with morbid obesity (MO) and atherosclerosis. OBJECTIVE: To evaluate inflammation and endothelial function as the initial mechanisms underlying subclinical atherosclerosis in patients with MO, with and without atheromas, and their evolution after bariatric surgery (BS). SETTING: Arnau de Vilanova University Hospital and University of Barcelona. METHODS: Plasma samples from 66 patients with MO were obtained before BS and 6 and 12 months after BS. Patients were divided into 2 groups based on the presence of atheromatous plaques (detected by ultrasound imaging). RESULTS: Inflammation was increased as demonstrated by changes in the levels of fibroblast growth factor 21, adiponectin, leptin, interleukin 6, tumor growth factor α, nonesterified free fatty acids, lipoprotein(a) and C-reactive protein (CRP). Endothelial dysfunction was characterized by impaired angiogenesis (measured through angiopoietin 1 and 2 and brain-derived neurotrophic factor), vascular function (changes in endothelin 1 and thrombomodulin levels), and diapedesis (changes in intercellular and vascular cell adhesion molecules, and E- and P-selectins). Both mechanisms occurred regardless of the presence of atheromas. BS ameliorated both processes even in patients who already had subclinical atherosclerosis. However, CRP, thrombomodulin, and P-selectin levels were higher in patients with atheromas. CONCLUSIONS: Endothelial dysfunction and inflammation were detected before the appearance of structural changes in vessel walls on ultrasonography images. BS might prevent or slow atherogenesis in the early stages by breaking the vicious circle between inflammation and endothelial dysfunction. CRP, thrombomodulin, and P-selectin may have a critical role in plaque development and, together with the study of endothelial dysfunction, might be useful in assessing early atherosclerosis and its evolution after BS.


Assuntos
Aterosclerose , Cirurgia Bariátrica , Obesidade Mórbida , Aterosclerose/etiologia , Biomarcadores , Proteína C-Reativa , Humanos , Inflamação , Obesidade Mórbida/cirurgia
20.
Surg Obes Relat Dis ; 16(9): 1258-1265, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32586725

RESUMO

BACKGROUND: Morbid obesity is associated with accelerated atherosclerosis, a chronic vascular disease related to oxidative stress (OS) and endothelial dysfunction. OBJECTIVES: We aimed to evaluate the effect of bariatric surgery (BS) on oxidative stress as a cardiovascular risk factor in patients with and without atheromatous plaques. SETTING: Arnau de Vilanova University Hospital and University of Barcelona. METHODS: Plasma samples from 66 patients with morbid obesity were obtained before BS and 6 and 12 months after. Patients were divided into 2 groups based on the presence of atheromatous plaques (detected by ultrasonography). OS parameters were measured by enzyme-linked immunosorbent assay. RESULTS: Patients with morbid obesity had OS independently of the presence of an atheroma, but oxidized low-density lipoprotein levels were higher in patients with plaques throughout the study (P = .0430). After surgery, oxidized low-density lipoprotein and malondialdehyde levels decreased significantly (P < .0001 in both cases). At the beginning of the study, antioxidant enzyme levels were the same between the groups. After surgery, paraoxonase 1 levels were increased (P < .0001) in the group without plaque, being significantly higher (P = .0147). Superoxide dismutase 2 levels were only decreased in patients without plaque (P < .0010), while catalase activity was higher in patients with plaque. CONCLUSIONS: Morbid obesity may lead to chronic OS, which increases predisposition to atherogenesis. BS improves the antioxidant profile and reduces OS and co-morbidities in both groups. However, the benefits are greater for patients without plaque. Therefore, BS may prevent atheroma formation and also could prevent plaque rupture by decreasing OS.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Placa Aterosclerótica , Antioxidantes , Humanos , Obesidade Mórbida/cirurgia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA