Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; 19(22): e2207966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36861366

RESUMO

Herein, a novel combination of Mg- and Ga-co-doped ZnO (MGZO)/Li-doped graphene oxide (LGO) transparent electrode (TE)/electron-transporting layer (ETL) has been applied for the first time in Cu2 ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al-doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short-circuit current density and fill factor of the TFSCs. Additionally, the solution-processable alternative LGO ETL prevented plasma-induced damage to chemical bath deposited cadmium sulfide (CdS) buffer, thereby enabling the maintenance of high-quality junctions using a thin CdS buffer layer (≈30 nm). Interfacial engineering with LGO improved the Voc of the CZTSSe TFSCs from 466 to 502 mV. Furthermore, the tunable work function obtained through Li doping generated a more favorable band offset in CdS/LGO/MGZO interfaces, thereby, improving the electron collection. The MGZO/LGO TE/ETL combination achieved a power conversion efficiency of 10.67%, which is considerably higher than that of conventional AZO/intrinsic ZnO (8.33%).

2.
Small ; 18(10): e2105084, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936207

RESUMO

The photoelectrochemical (PEC) cell that collects and stores abundant sunlight to hydrogen fuel promises a clean and renewable pathway for future energy needs and challenges. Monoclinic bismuth vanadate (BiVO4 ), having an earth-abundancy, nontoxicity, suitable optical absorption, and an ideal n-type band position, has been in the limelight for decades. BiVO4 is a potential photoanode candidate due to its favorable outstanding features like moderate bandgap, visible light activity, better chemical stability, and cost-effective synthesis methods. However, BiVO4 suffers from rapid recombination of photogenerated charge carriers that have impeded further improvements of its PEC performances and stability. This review presents a close look at the emerging surface, bulk, and interface engineering strategies on BiVO4 photoanode. First, an effective approach of surface functionalization via different cocatalysts to improve the surface kinetics of BiVO4 is discussed. Second, state-of-the-art methodologies such as nanostructuring, defect engineering, and doping to further enhance light absorption and photogenerated charge transport in bulk BiVO4 are reviewed. Third, interface engineering via heterostructuring to improve charge separation is introduced. Lastly, perspectives on the foremost challenges and some motivating outlooks to encourage the future research progress in this emerging frontier are offered.

3.
Am J Emerg Med ; 38(5): 911-915, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31345593

RESUMO

INTRODUCTION: Hypotension after emergent ETI is a relatively common complication during and after emergency airway management. We aimed to evaluate SI, MSI, and age SI to predict PIH in patients who presented to the emergency department. Moreover, which factors would be better for predicting the event or similar to the others. METHODS: A retrospective, standardized chart review of consecutive ED patients requiring intubation at an urban, tertiary-care teaching hospital, from January 2011 to December 2016. PIH was defined as any recorded SBP <90 mmHg or MAP <65 mmHg within the 60-minute period after intubation. RESULTS: Hypotension after emergent ETI was observed in 130 (29.7%) patients. The ROC-AUC of age SI, MSI, and SI before intubation for prediction of PIH were 0.676 (95% CI 0.63-0.72), 0.614 (95% CI 0.567-0.66), and 0.611 (95% CI 0.564-0.657). The prognostic performance of age SI for prediction of PIH was better than MSI and SI (p = 0.006 for age SI versus MSI, p = 0.005 for age SI versus SI). CONCLUSIONS: Preintubation age SI, MSI, and SI are all independent predictors of PIH in patients who need emergent intubation. Aong these parameters, age SI is the best marker to predict the outcome. Calculation of these indexes are simple and could be an guide of implement to prevent hypotension after ETI.


Assuntos
Pressão Sanguínea , Tratamento de Emergência , Frequência Cardíaca , Hipotensão/etiologia , Intubação Intratraqueal/efeitos adversos , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Serviço Hospitalar de Emergência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Choque/diagnóstico
4.
Int J Mol Sci ; 18(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182579

RESUMO

Oxidative stress and neuroinflammation are implicated in the development and pathogenesis of Alzheimer's disease (AD). Here, we investigated the anti-inflammatory and antioxidative effects of krill oil. Oil from Euphausia superba (Antarctic krill), an Antarctic marine species, is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We examined whether krill oil diet (80 mg/kg/day for one month) prevents amyloidogenesis and cognitive impairment induced by intraperitoneal lipopolysaccharide (LPS) (250 µg/kg, seven times daily) injections in AD mice model and found that krill oil treatment inhibited the LPS-induced memory loss. We also found that krill oil treatment inhibited the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased reactive oxygen species (ROS) and malondialdehyde levels. Krill oil also suppresses IκB degradation as well as p50 and p65 translocation into the nuclei of LPS-injected mice brain cells. In association with the inhibitory effect on neuroinflammation and oxidative stress, krill oil suppressed amyloid beta (1-42) peptide generation by the down-regulating APP and BACE1 expression in vivo. We found that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (50 and 100 µM) dose-dependently decreased LPS-induced nitric oxide and ROS generation, and COX-2 and iNOS expression as well as nuclear factor-κB activity in cultured microglial BV-2 cells. These results suggest that krill oil ameliorated impairment via anti-inflammatory, antioxidative, and anti-amyloidogenic mechanisms.


Assuntos
Óleos de Peixe/química , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Western Blotting , Ciclo-Oxigenase 2/metabolismo , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Euphausiacea/química , Imuno-Histoquímica , Masculino , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
ACS Appl Mater Interfaces ; 16(13): 16328-16339, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516946

RESUMO

Kesterite-based Cu2ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs) are a promising candidate for low-cost, clean energy production owing to their environmental friendliness and the earth-abundant nature of their constituents. However, the advancement of kesterite TFSCs has been impeded by abundant defects and poor microstructure, limiting their performance potential. In this study, we present efficient Ag-alloyed CZTSSe TFSCs enabled by a facile metallic precursor engineering approach. The positioning of the Ag nanolayer in the metallic stacked precursor proves crucial in expediting the formation of Cu-Sn metal alloys during the alloying process. Specifically, Ag-included metallic precursors promote the growth of larger grains and a denser microstructure in CZTSSe thin films compared to those without Ag. Moreover, the improved uniformity of Ag, facilitated by the evaporation deposition technique, significantly suppresses the formation of detrimental defects and related defect clusters. This suppression effectively reduces nonradiative recombination, resulting in enhanced performance in kesterite TFSCs. This study not only introduces a metallic precursor engineering strategy for efficient kesterite-based TFSCs but also accelerates the development of microstructure evolution from metallic stacked precursors to metal chalcogenide compounds.

6.
Adv Sci (Weinh) ; 11(15): e2305938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342621

RESUMO

Kesterite is an earth-abundant energy material with high predicted power conversion efficiency, making it a sustainable and promising option for photovoltaics. However, a large open circuit voltage Voc deficit due to non-radiative recombination at intrinsic defects remains a major hurdle, limiting device performance. Incorporating Ge into the kesterite structure emerges as an effective approach for enhancing performance by manipulating defects and morphology. Herein, how different amounts of Ge affect the kesterite growth pathways through the combination of advanced microscopy characterization techniques are systematically investigated. The results demonstrate the significance of incorporating Ge during the selenization process of the CZTSSe thin film. At high temperature, the Ge incorporation effectively delays the selenization process due to the formation of a ZnSe layer on top of the metal alloys through decomposition of the Cu-Zn alloy and formation of Cu-Sn alloy, subsequently forming of Cu-Sn-Se phase. Such an effect is compounded by more Ge incorporation that further postpones kesterite formation. Furthermore, introducing Ge mitigates detrimental "horizontal" grain boundaries by increasing the grain size on upper layer. The Ge incorporation strategy discussed in this study holds great promise for improving device performance and grain quality in CZTSSe and other polycrystalline chalcogenide solar cells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38047907

RESUMO

Cation incorporation emerges as a promising approach for improving the performance of the kesterite Cu2ZnSn(S,Se)4 (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of In2S3 is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process. The successful doping of In improved crystal growth and promoted the formation of larger grains. Furthermore, the CZTSSe TFSCs fabricated with In doping exhibited improved device performance. In particular, the In-CZTSSe-2-based device showed an improved power conversion efficiency (PCE) of 9.53%, open-circuit voltage (Voc) of 486 mV, and fill factor (FF) of 61% compared to the undoped device. Moreover, the small amount of In incorporated into the CZTSSe absorber demonstrated reduced nonradiative recombination, improved carrier separation, and enhanced carrier transport properties. This study suggests a simple and effective way to incorporate In to achieve high efficiency and low Voc loss.

8.
ACS Appl Mater Interfaces ; 15(17): 21123-21133, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083398

RESUMO

The coupling of oxygen evolution reaction (OER) catalysts with photoanodes is a promising strategy for enhancing the photoelectrochemical (PEC) performance by passivating photoanode's surface defect states and facilitating charge transfer at the photoanode/electrolyte interface. However, a serious interface recombination issue caused by poor interface and OER catalysts coating quality often limits further performance improvement of photoanodes. Herein, a rapid Fenton-like reaction method is demonstrated to produce ultrathin amorphous Ni:FeOOH catalysts with in situ-induced oxygen vacancies (Vo) to improve the water oxidation activity and stability of BiVO4 photoanodes. The combined physical characterizations, PEC studies, and density functional theory calculations revealed that the reductive environment in a Fenton-like reaction in situ produces abundant Vo in Ni:FeOOH catalysts, which significantly improves charge separation and charge transfer efficiency of BiVO4 while also offering abundant active sites and a reduced energy barrier for OER. As a result, Ni:FeOOH-Vo catalysts yielded a more than 2-fold increased photocurrent density in the BiVO4 photoanode (from 1.54 to 4.15 mA cm-2 at 1.23 VRHE), accompanied by high stability for 5 h. This work not only highlights the significance of abundant Vo in catalysts but also provides new insights into the rational design and fabrication of efficient and stable solar water-splitting systems.

9.
ACS Appl Mater Interfaces ; 13(1): 429-437, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33393763

RESUMO

Kesterite-based thin-film solar cells (TFSCs) have recently gained significant attention in the photovoltaic (PV) sector for their elemental earth abundance and low toxicity. An inclusive study from the past reveals basic knowledge about the grain boundary (GB) and grain interior (GI) interface. However, the compositional dependency of the surface potential within GBs and GIs remains unclear. The present work provides insights into the surface potential of the bulk and GB interfaces. The tin (Sn) composition is sensitive to the absorber morphology, and therefore, it significantly impacts absorber and device properties. The absorber morphology improves with the formation of larger grains as the Sn content increases. Additionally, the presence of Sn(S,Se)2 and increased [ZnCu + VCu] A-type defect cluster density are observed, validated through Raman analysis. The secondary ion mass spectroscopy analysis reveals the altered distribution of sulfur (S) and sodium (Na) with higher near-surface accumulation. The synergistic outcome of the increased density of defects and the accumulation of S near the interface provides a larger GB and GI difference and expedites carrier separation improvement. Consequently, at an optimum compositional ratio of Cu/(Zn+Sn) = ∼0.6, the power conversion efficiency (PCE) is significantly improved from 6.42 to 11.04% with a record open-circuit voltage (VOC) deficit of 537 mV.

10.
ACS Appl Mater Interfaces ; 13(11): 13425-13433, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33706505

RESUMO

Point defect engineering in Cu2ZnSnSe4 (CZTSe) thin films is the main issue to improve its device performance. This study reveals the correlation between the reaction pathway and the point defects in the CZTSe film. The reaction pathway from a metallic precursor (Mo/Zn/Sn/Cu) to a kesterite CZTSe film is varied by changing the annealing process. The synthesized CZTSe films under different reaction pathways induce different device performances with different defect energy levels, although all CZTSe films have similar structural and optical properties (Eg ∼ 1.0 eV). The admittance spectroscopy demonstrates the correlations between point defect types (VZn, ZnSn, ZnCu, CuZn, and VCu) and the reaction pathways for the formation of CZTSe films. The different growth rates of binary selenides, such as ZnSe and/or Sn-Se phases, during the annealing process are especially strongly related to the formation of point defects, leading to the different open-circuit voltages (396-451 mV) and fill factors (51-65%). The results of this study suggest that controlling the reaction pathway is an effective approach to adjust the formation of defects in the kesterite CZTSe film as well as to fabricate high-performance solar cell devices.

11.
Arch Pharm Res ; 42(3): 274-283, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30430364

RESUMO

Ultraviolet B (UVB) irradiation causes sunburn, inflammatory responses, dysregulation of immune function, oxidative stress, DNA damage and photocarcinogenesis on skin. Rosemary (Rosmarinus officinalis L.) has been reported to inhibit inflammation. Carnosol, a major component of Rosemary, has prominent anti-inflammatory effects. However, its protective effect on UVB-induced inflammatory skin responses has not yet been reported. Here, we investigated the effectiveness of carnosol on UVB-induced inflammation. We examined the anti-inflammation effect of topical application of carnosol (0.05 µg/cm2) on UVB (540 mJ/cm2, for 3 successive days)-induced skin inflammation in HR1 mice. Topical application of carnosol inhibited UVB-induced erythema, epidermal thickness, inflammatory responses in HR1 mice. Carnosol reduced the level of Immunoglobulin-E and IL-1ß in blood serum of UVB-induced mice. Carnosol also significantly inhibited the UVB-induced expression of inflammatory marker protein (iNOS and COX-2) in back skin of mice. In addition, carnosol treated skin decreased activation of STAT3, a transcriptional factor regulating inflammatory genes. Our study suggested that carnosol has protective effects on skin inflammatory skin damages by UVB.


Assuntos
Abietanos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Raios Ultravioleta , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição STAT3/metabolismo
12.
Allergy Asthma Immunol Res ; 11(4): 548-559, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31172723

RESUMO

PURPOSE: In our previous study, we demonstrated that both titrated extract of Centella asiatica (TECA) and astaxanthin (AST) have anti-inflammatory effects in a 5% phthalic anhydride (PA) mouse model of atopic dermatitis (AD). The increasing prevalence of AD demands new therapeutic approaches for treating the disease. We investigated the therapeutic efficacy of the ointment form of TECA, AST and a TECA + AST combination in a mouse model of AD to see whether a combination of the reduced doses of 2 compounds could have a synergistic effect. METHODS: An AD-like lesion was induced by the topical application of 5% PA to the dorsal ear and back skin of an Hos:HR-1 mouse. After AD induction, TECA (0.5%), AST (0.5%) and the TECA (0.25%) + AST (0.25%) combination ointment (20 µg/cm²) were spread on the dorsum of the ear or back skin 3 times a week for 4 weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclocxygenase (COX)-2, and nuclear factor (NF)-κB activity. We also measured the concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and immunoglobulin E (IgE) in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). RESULTS: PA-induced skin morphological changes and ear thickness were significantly reduced by TECA, AST and TECA + AST treatments, but these inhibiting effects were more pronounced in the TECA + AST treatment. TECA, AST and the TECA+AST reatments inhibited the expression of iNOS and COX-2; NF-κB activity; and the release of TNF-α, IL-6 and IgE. However, the TECA+AST treatment showed additive or synergistic effects on AD. CONCLUSIONS: Our results demonstrate that the combination of TECA and AST could be a promising therapeutic agent for AD by inhibiting NF-κB signaling.

13.
J Phys Chem Lett ; 9(16): 4555-4561, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30048140

RESUMO

Herein, we report a facile process, i.e., controlling the initial chamber pressure during the postdeposition annealing, to effectively lower the band tail states in the synthesized CZTSSe thin films. Through detailed analysis of the external quantum efficiency derivative ( dEQE/ dλ) and low-temperature photoluminescence (LTPL) data, we find that the band tail states are significantly influenced by the initial annealing pressure. After carefully optimizing the deposition processes and device design, we are able to synthesize kesterite CZTSSe thin films with energy differences between inflection of d(EQE)/dλ and LTPL as small as 10 meV. These kesterite CZTSSe thin films enable the fabrication of solar cells with a champion efficiency of 11.8% with a low Voc deficit of 582 mV. The results suggest that controlling the annealing process is an effective approach to reduce the band tail in kesterite CZTSSe thin films.

14.
FEMS Microbiol Lett ; 277(2): 133-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18031332

RESUMO

The Gram-positive spore-forming bacterium, Bacillus thuringiensis, a member of the Bacillus cereus group, produces chitosanases that catalyze the hydrolysis of chitosan to chitosan-oligosaccharides (COS). Although fungal and bacterial chitosanases belonging to other glycoside hydrolase (GH) families have been characterized in a variety of microorganisms, knowledge on the genetics and phylogeny of the GH-8 chitosanases remains limited. Nine genes encoding chitosanases were cloned from 29 different serovar strains of B. thuringiensis and they were expressed in Escherichia coli. The ORFs of the chitosanases contained 1,359 nucleotides and the protein products had high levels of sequence identity (>96%) to other Bacillus species GH-8 chitosanases. Thin-layer chromatography and HPLC analyses demonstrated that these enzymes hydrolyzed chitosan to a chitosan-trimer and a chitosan-tetramer as major products, and this could be useful in the production of COS. In addition, a simple plate assay was developed, involving a soluble chitosan, for high-throughput screening of chitosanases. This system allowed screening for mutant enzymes with higher enzyme activity generated by error-prone PCR, indicating that it can be used for directed chitosanase evolution.


Assuntos
Bacillus thuringiensis/enzimologia , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Quitosana/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Expressão Gênica , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes/metabolismo , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA