RESUMO
Polymer cubosomes (PCs) are a recent class of self-assembled block copolymer (BCP) microparticles with an accessible periodic channel system. Most reported PCs consist of a polystyrene scaffold, which provides mechanical stability for templating but has a limited intrinsic functionality. Here, we report the synthesis of photocleavable BCPs with compositions suitable for PC formation. We analyze the self-assembly mechanism and study the model release of dyes during irradiation, where the transition of the BCPs from amphiphilic to bishydrophilic causes the rapid disassembly of the PCs. A combination of modeling and experiment shows that the evolution of PCs proceeds first via liquid-liquid phase separation into polymer-rich droplets, followed by microphase separation within this droplet confinement, and finally, membrane reorganization into high internal order. This insight may encourage exploration of alternative preparation strategies to better control the size and homogeneity of PCs.
RESUMO
We report on the synthesis of core-shell microparticles (CSMs) with an acid catalyst in the core and a base catalyst in the shell by surfactant-free emulsion polymerization (SFEP). The organocatalytic monomers were separately copolymerized in three synthetic steps allowing the spatial separation of incompatible acid and base catalysts within the CSMs. Importantly, a protected and thermo-decomposable sulfonate monomer was used as acid source to circumvent the neutralization of the base catalyst during shell formation, which was key to obtain stable, catalytically active CSMs. The catalysts showed excellent performance in an established one-pot model cascade reaction in various solvents (including water), which involved an acid-catalyzed deacetalization followed by a base-catalyzed Knoevenagel condensation. The CSMs are easily recycled, modified, and their synthesis is scalable, making them promising candidates for organocatalytic applications.
RESUMO
Multicompartment micelles (MCMs) have become attractive drug delivery systems as they allow the separate storage of two or more incompatible cargos in their core compartments (e.g., drugs and dyes for imaging). A recent hierarchical self-assembly process for hydrophobic terpolymers in organic solvents showed the ability to form very homogeneous MCM populations, yet the transfer of this process into water requires a better understanding of the formation mechanism and influence of chain mobility during assembly. Here, the synthesis of a linear poly(oligo(ethylene glycol) methacrylate)-block-poly(benzyl acrylate)-block-poly(4-vinylpyridine) (POEGMA-b-PBzA-b-P4VP) triblock terpolymer by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported as well as its step-wise assembly into MCMs in water with POEGMA corona, PBzA patches, and P4VP core. Reversible assembly/disassembly of the MCMs is investigated through protonation/deprotonation of the P4VP core. Interestingly, the low glass transition temperature (Tg ) of the hydrophobic PBzA middle block causes MCMs to directly disassemble into molecularly dissolved chains instead of patchy micelles due to mechanical stress from electrosteric repulsion of the protonated P4VP corona chains. In addition, pH resistant MCMs are created by core-crosslinking and fluorescent properties are added by covalent anchoring of fluorescent dyes via straightforward click chemistry.
Assuntos
Micelas , Água , Concentração de Íons de Hidrogênio , Polimerização , PolímerosRESUMO
The confinement assembly of block copolymers shows great potential regarding the formation of functional microparticles with compartmentalized structure. Although a large variety of block chemistries have already been used, less is known about microdomain degradation, which could lead to mesoporous microparticles with particularly complex morphologies for ABC triblock terpolymers. Here, we report on the formation of triblock terpolymer-based, multicompartment microparticles (MMs) and the selective degradation of domains into mesoporous microparticles. A series of polystyrene-block-polybutadiene-block-poly(L-lactide) (PS-b-PB-b-PLLA, SBL) triblock terpolymers was synthesized by a combination of anionic vinyl and ring-opening polymerization, which were transformed into microparticles through evaporation-induced confinement assembly. Despite different block compositions and the presence of a crystallizable PLLA block, we mainly identified hexagonally packed cylinders with a PLLA core and PB shell embedded in a PS matrix. Emulsions were prepared with Shirasu Porous Glass (SPG) membranes leading to a narrow size distribution of the microparticles and control of the average particle diameter, d ≈ 0.4 µm-1.8 µm. The core-shell cylinders lie parallel to the surface for particle diameters d < 0.5 µm and progressively more perpendicular for larger particles d > 0.8 µm as verified with scanning and transmission electron microscopy and particle cross-sections. Finally, the selective degradation of the PLLA cylinders under basic conditions resulted in mesoporous microparticles with a pronounced surface roughness.