Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15504-15510, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571954

RESUMO

Earth system models (ESMs) project that global warming suppresses biological productivity in the Subarctic Atlantic Ocean as increasing ocean surface buoyancy suppresses two physical drivers of nutrient supply: vertical mixing and meridional circulation. However, the quantitative sensitivity of productivity to surface buoyancy is uncertain and the relative importance of the physical drivers is unknown. Here, we present a simple predictive theory of how mixing, circulation, and productivity respond to increasing surface buoyancy in 21st-century global warming scenarios. With parameters constrained by observations, the theory suggests that the reduced northward nutrient transport, owing to a slower ocean circulation, explains the majority of the reduced productivity in a warmer climate. The theory also informs present-day biases in a set of ESM simulations as well as the physical underpinnings of their 21st-century projections. Hence, this theoretical understanding can facilitate the development of improved 21st-century projections of marine biogeochemistry and ecosystems.


Assuntos
Organismos Aquáticos/metabolismo , Ecossistema , Aquecimento Global , Modelos Teóricos , Água do Mar/química , Organismos Aquáticos/efeitos da radiação , Oceano Atlântico , Atmosfera/análise , Atmosfera/química , Planeta Terra , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/análise , Nitratos/análise , Nitratos/metabolismo , Nutrientes/metabolismo , Luz Solar , Movimentos da Água
2.
Geophys Res Lett ; 49(10): e2021GL095748, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35864818

RESUMO

The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low versus high ocean salinity. We find that saltier oceans yield warmer climates in large part due to changes in ocean dynamics. Increasing ocean salinity from 20 to 50 g/kg results in a 71% reduction in sea ice cover in our present-day Earth scenario. This same salinity change also halves the pCO2 threshold at which Snowball glaciation occurs in our Archean scenarios. In combination with higher levels of greenhouse gases such as CO2 and CH4, a saltier ocean may allow for a warm Archean Earth with only seasonal ice at the poles despite receiving ∼20% less energy from the Sun.

3.
Proc Natl Acad Sci U S A ; 114(1): 45-50, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994158

RESUMO

Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

4.
Proc Natl Acad Sci U S A ; 111(24): 8753-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889624

RESUMO

In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.


Assuntos
Camada de Gelo , Oceanos e Mares , Algoritmos , Regiões Antárticas , Ciclo do Carbono , Clima , Simulação por Computador , Modelos Teóricos , Oceanografia , Água do Mar , Fatores de Tempo , Movimentos da Água
5.
Sci Adv ; 3(11): e1600983, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29134193

RESUMO

Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.


Assuntos
Clima , Animais , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Planeta Terra , Camada de Gelo/química , Datação Radiométrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA