RESUMO
Hydropeaking, defined as frequent and rapid variation in flow in regulated rivers with hydropower plants over a short period of time, usually sub-daily to weekly, alters hydraulic parameters such as water levels or flow velocity and exerts strong impacts on fluvial ecosystems. We evaluated the effects of hydropeaking on riverbank vegetation, specifically assessing the germination and establishment of seedlings and cuttings of plant species representing a variation in traits. We used seeds and seedlings and cuttings varying in size as phytometers, and transplanted them to riverbanks both above and below dams used for hydropower production in northern Sweden, selected to represent a gradient in hydropeaking intensity, and along a free-flowing reach. We also analyzed sub-daily water-level variables modified by hydropeaking to identify variables key in explaining the observed vegetation patterns. We found that plant responses to hydropeaking varied with species, with flood-intolerant species being the most strongly affected, as early as the germination stage. In contrast, seeds of flood-tolerant species managed to germinate and survive the early establishment phase, although strong erosive processes triggered by hydropeaking eventually caused most of them to fail. The fate of flood-intolerant species identifies germination as the most critical life-history stage. The depth and frequency of the inundation were the leading variables explaining plant responses, while the duration of shallow inundation explained little of the variation. The rise and fall rates of water levels were key in explaining variation in germination success. Based on the results, we propose restoration measures to enhance establishment of riparian plant communities while minimizing the impact on hydropower electricity production. Given the strong decrease in the germination of species intolerant to prolonged flooding with hydropeaking, planting of seedlings, preferably of large sizes, together with restrictions in the operation of the power plant during the establishment phase to enhance survival would be the best restoration option. Given the high probability of plant uprooting with hydropeaking, bank protection measures have the potential to increase riparian plant survival of all species, including flooding-tolerant species.
Assuntos
Ecossistema , Rios , Inundações , Centrais Elétricas , SuéciaRESUMO
Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.
RESUMO
Climate-change projections suggest large changes in riverine flow regime, which will likely alter riparian communities. In northern Europe, forecasts propose lower annual spring flood peaks and higher winter flows, resulting in narrower riparian zones. To estimate the impact of climate change on habitat extent of riparian plants, we developed a framework estimating the sensitivity and exposure of individual species to streamflow change, and surveyed five reaches along the free-flowing Vindel River in northern Sweden. We modeled the hydrologic niche of riparian plant species based on the probability of occurrence along gradients of flood frequency and duration and used predicted future water-level fluctuations (based on climate models and IPCC emission scenarios) to calculate changes in flow-related habitat availability of individual species. Despite projected increases in runoff, we predict most species to decrease in riparian elevational extent by on average 12-29% until the end of the century, depending on scenario. Species growing in the upper, spring-flood-controlled part of the riparian zone will likely lose most habitat, with the largest reductions in species with narrow ranges of inundation duration tolerance (decreases of up to 54%). In contrast, the elevational extent of most amphibious species is predicted to increase, but conditions creating isoëtid vegetation will become rarer or disappear: isoëtid vegetation is presently found in areas where ice formed in the fall settles on the riverbank during the winter as water levels subside. Higher winter flows will make these conditions rare. We argue that our framework is useful to project the effects of hydrologic change caused by climate change as well as other stressors such as flow regulation also in other regions. With few rivers remaining unaffected by dams and other human stressors, these results call for monitoring to detect species declines. Management to alleviate species losses might include mitigation of habitat degradation from land-use activities, more environmentally friendly flow schemes, and more intensive management options such as mowing riparian meadows no longer regularly maintained by recurrent floods.
Assuntos
Inundações , Rios , Ecossistema , Europa (Continente) , SuéciaRESUMO
While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations. Genera that had accumulated more species tend to occupy wider niche space, manifested both as occurrence over wider areas and in more habitats. Genera with geographic ranges that have remained more stable in response to glacial-interglacial changes in climate were also more species rich. Since many relevant explanatory variables vary latitudinally, it is crucial to control for latitude when testing alternative mechanistic explanations for geographic variation in diversification among clades.
Assuntos
Evolução Biológica , Aves , Animais , Ecossistema , Geografia , FilogeniaRESUMO
Recent research predicts that future climate change will result in substantial biodiversity loss associated with loss of habitat for species. However, the magnitude of the anticipated biodiversity impacts are less well known. Studies of species vulnerability to climate change through species distribution models are often limited to assessing the extent of species' exposure to the consequences of climate change to their local environment, neglecting species sensitivity to global change. The likelihood that species or populations will decline or go extinct due to climate change also depends on the general sensitivity and adaptive capacity of species. Hence, analyses should also obtain more accurate assessments of their vulnerability. We addressed this by constructing a vulnerability matrix for 180 bird species currently breeding in Subarctic and Arctic Europe that integrates a climatic exposure-based vulnerability index and a natural-history trait-based vulnerability index. Species that may need extra conservation attention based on our matrix include the Great Snipe (Gallinago media), the Rough-legged Buzzard (Buteo lagopus), the Red-throated Pipit (Anthus cervinus), the Common Swift (Apus apus), the Horned Lark (Eremophila alpestris), and the Bar-tailed Godwit (Limosa lapponica). Our vulnerability matrix stresses the importance of looking beyond exposure to climate change when species conservation is the aim. For the species that scored high in our matrix the future in the region looks grim and targeted conservation actions, incorporating macroecological and global perspectives, may be needed to alleviate severe population declines. We further demonstrate that climate change is predicted to significantly reduce the current breeding range of species adapted to cold climates in Subarctic and Arctic Europe. The number of incubation days and whether the species was a habitat specialist or not were also among the variables most strongly related to predicted contraction or expansion of species' breeding ranges. This approach may aid the identification of vulnerable bird species worldwide.
Assuntos
Distribuição Animal , Biodiversidade , Aves/fisiologia , Mudança Climática , Animais , Regiões Árticas , Conservação dos Recursos Naturais , Finlândia , Noruega , Dinâmica Populacional , SuéciaRESUMO
River systems form dendritic ecological networks that influence the spatial structure of riverine communities. Few empirical studies have evaluated how regional, dispersal-related processes and local habitat factors interact to govern network patterns of species composition. We explore such interactions in a boreal watershed and show that riparian plant species richness increases strongly with drainage size, i.e., with downstream position in the network. Assemblage composition was nested, with new species successively added downstream. These spatial patterns in species composition were related to a combination of local and regional processes. Breadth in local habitat conditions increased downstream in the network, resulting in higher habitat heterogeneity and reduced niche overlap among species, which together with similar trends in disturbance, allows more species to coexist. Riparian edaphic conditions were also increasingly favorable to more species within the regional pool along larger streams, with greater nitrogen availability (manifested as lower C:N) and more rapid mineralization of C and N (as indicated by ratios of stable isotopes) observed with downstream position in the network. The number of species with the capacity for water dispersal increased with stream size, providing a mechanistic link between plant traits and the downstream accumulation of species as more propagules arrive from upstream sites. Similarity in species composition between sites was related to both geographical and environmental distance. Our results provide the first empirical evidence that position in the river network drives spatial patterns in riparian plant diversity and composition by the joint influence of local (disturbance, habitat conditions, and habitat breadth) and regional (dispersal) forces.
Assuntos
Biodiversidade , Plantas/classificação , Rios , Demografia , Modelos Teóricos , Especificidade da EspécieRESUMO
Riparian vegetation is exposed to stress from inundation and hydraulic disturbance, and is often rich in native and alien plant species. We describe 35 traits that enable plants to cope with riparian conditions. These include traits for tolerating or avoiding anoxia and enabling underwater photosynthesis, traits that confer resistance and resilience to hydraulic disturbance, and attributes that facilitate dispersal, such as floating propagules. This diversity of life-history strategies illustrates that there are many ways of sustaining life in riparian zones, which helps to explain high riparian biodiversity. Using community assembly theory, we examine how adaptations to inundation, disturbance and dispersal shape plant community composition along key environmental gradients, and how human actions have modified communities. Dispersal-related processes seem to explain many patterns, highlighting the influence of regional processes on local species assemblages. Using alien plant invasions like an (uncontrolled) experiment in community assembly, we use an Australian and a global dataset to examine possible causes of high degrees of riparian invasion. We found that high proportions of alien species in the regional species pools have invaded riparian zones, despite not being riparian specialists, and that riparian invaders disperse in more ways, including by water and humans, than species invading other ecosystems.
Assuntos
Adaptação Biológica , Ecossistema , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Inundações , Herança Multifatorial , Característica Quantitativa HerdávelRESUMO
Riparian vegetation research has traditionally focused on channel-related processes because riparian areas are situated on the edge of aquatic ecosystems and are therefore greatly affected by the flow regime of streams and rivers. However, due to their low topographic position in the landscape, riparian areas receive significant inputs of water and nutrients from uplands. These inputs may be important for riparian vegetation, but their role for riparian plant diversity is poorly known. We studied the relationship between the influx of groundwater (GW) from upland areas and riparian plant diversity and composition along a stream size gradient, ranging from small basins lacking permanent streams to a seventh-order river in northern Sweden. We selected riparian sites with and without GW discharge using a hydrological model describing GW flow accumulation to test the hypothesis that riparian sites with GW discharge harbor plant communities with higher species richness. We further investigated several environmental factors to detect habitat differences between sites differing in GW discharge conditions. Vascular plant species richness was between 15% and 20% higher, depending on the spatial scale sampled, at riparian sites with GW discharge in comparison to non-discharge sites, a pattern that was consistent across all stream sizes. The elevated species richness was best explained by higher soil pH and higher nitrogen availability (manifested as lower soil C/N ratio), conditions which were positively correlated with GW discharge. Base cations and possibly nitrogen transported by groundwater may therefore act as a terrestrial subsidy of riparian vegetation. The stable isotopes 15N and 13C were depleted in soils from GW discharge compared to non-discharge sites, suggesting that GW inputs might also affect nitrogen and carbon dynamics in riparian soils. Despite the fact that many flows of water and nutrients reaching streams are filtered through riparian zones, the importance of these flows for riparian vegetation has not been appreciated. Our results demonstrated strong relationships between GW discharge, plant species richness and environmental conditions across the entire stream size gradient, suggesting that both river hydrology and upland inputs should be considered to fully understand riparian vegetation dynamics.
Assuntos
Biodiversidade , Água Subterrânea , Plantas/classificação , Rios , Árvores , Regiões Árticas , SuéciaRESUMO
The ecological restoration of streams in Sweden has become increasingly important to counteract effects of past timber floating. In this study, we focused on the effect on riparian soil properties after returning coarse sediment (cobbles and boulders) to the channel and reconnecting riparian with in-stream habitats. Restoration increases habitat availability for riparian plants, but its effects on soil quality are unknown. We also analyzed whether the restoration effect differs with variation in climate and stream size. We used standardized plant species to measure the performance of a grass ( L.) and a forb ( L.) in soils sampled in the riparian zones of channelized and restored streams and rivers. Furthermore, we analyzed the mass fractions of carbon (C) and nitrogen (N) along with the proportions of the stable isotopes C and N in the soil, as well as its grain size composition. We found a positive effect of restoration on biomass of phytometers grown in riparian soils from small streams, indicating that restoration enhanced the soil properties favoring plant performance. We suggest that changed flooding with more frequent but less severe floods and slower flows, enhancing retention, could explain the observed patterns. This positive effect suggests that it may be advantageous to initiate restoration efforts in small streams, which make up the highest proportion of the stream network in a catchment. Restoration responses in headwater streams may then be transmitted downstream to facilitate recovery of restored larger rivers. If the larger rivers were restored first, a slower reaction would be expected.
RESUMO
Hydropower is central to renewable electricity systems, but degrades ecosystems, calling for environmental flow schemes to enhance the ecological status of river systems. Environmental flow assessments need to account for climate change, since climate-driven changes in runoff affect both hydropower operation and riverine ecosystems. Here, we quantify expected changes in hydropower production and environmental benefits of introducing environmental flows in a large regulated river system in northern Sweden in a future climate. Compared with the hydrology of 1981-2010, runoff is projected to increase with climatic conditions projected for 2040, leading to a 2.2 % increase in hydropower production with present rules for turbine and reservoir operation. Implementing environmental flows will result in lower hydropower production losses in with the 2040 climate than at present: Introducing restrictions against zero flow events, discharge to technical fishways and bypassed reaches throughout the year (with seasonal flow variation), as well as having more natural water-level variation in all run-of-river impoundments, would reduce annual hydropower production with 3.5 % with present conditions, and by 3.3 % in 2040. At the same time, the net effect of higher runoff and introducing environmental flows means that the annual hydropower production in the 2040 climate would be only 0.8 % lower compared to 1981-2010. In all scenarios, reservoir filling degree in 2040 was projected to increase compared to scenarios for 1981-2010, and flow requirements were met for both environmental flows and hydropower production over an 83-year scenario-based time series. This study demonstrates the feasibility of introducing environmental flow actions in Sweden, and other regions where increases in runoff are projected, with sustained hydropower production, having large benefits for riverine biodiversity and enhancing resilience of riverine ecosystems to climate change. For this to be successful, collaboration among stakeholders in riverine management is needed.
RESUMO
The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.
Assuntos
Alnus , Teorema de Bayes , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Phytophthora , Ecossistema , Europa (Continente)/epidemiologia , Florestas , Conservação dos Recursos NaturaisRESUMO
Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Desenvolvimento Vegetal , Rios , Briófitas/crescimento & desenvolvimento , Especificidade da Espécie , Suécia , Movimentos da ÁguaRESUMO
Hydropeaking, defined as rapid and frequent changes in flow to optimize hydropower production, is an increasingly common procedure negatively affecting lotic habitats in riverine ecosystems. An important aspect of hydropeaking is zero-flow events, occurring when hydropower stations are stopped due to low energy demand or low electricity prices. We quantified the ecological benefits and consequences for hydropower production of restricting zero-flow events. The 19 major hydropower stations in the Ume River system in northern Sweden stand still with no discharge 9% to 55% of the time a hydrologically normal year, transforming lotic habitat to stagnant water. The duration of zero-flow events is exacerbated in dry years, with no discharge for 28% of the time in a typical station, to be compared with 7% in a wet year. Zero-flow events affect the behavior of fish, altering the fish community, and potentially result in low oxygen levels and low food supply to filter-feeding macroinvertebrates. We modelled the consequences of restricting zero-flow events by introducing minimum flows equaling mean annual low flow or higher for the entire Ume River catchment. The measure would result in an additional 240 ha of shallow lotic habitat with gravel to boulder streambeds having flow velocity exceeding 0.1 m/s, i.e. suitable for lotic species such as grayling Thymallus thymallus. In addition, the measure would enable creating another 107 ha of similar habitat after structural rehabilitation of river reaches. All measures would result in a mean loss of hydropower production of 0.5% per year for the entire river system, 98% of which would occur between May and October when the demand for electricity is lower. Hydropower production would also be partly moved from daytime to nighttime. As zero-flow events are common in several other river systems, restrictions on their frequency and duration could be implemented in many areas.
RESUMO
Global warming affects plant fitness through changes in functional traits and thereby ecosystem function. Wetlands are declining worldwide, and hence, ecosystem functions linked to wetlands are threatened. We use Caltha palustris "a common wetland plant" to study whether warming affects growth and reproduction differently depending on origin of source population, potentially affecting phenotypic response to local climate. We conducted a 2-year in situ temperature manipulation experiment using clone pairs of C. palustris in four regions, along a 1300-km latitudinal gradient of Sweden. Open-top chambers were used to passively increase temperature, paired with controls. Growth and reproductive traits were measured from 320 plants (four regions × five sites × two treatments × eight plants) over two consecutive seasons to assess the effect of warming over time. We found that warming increased plant height, leaf area, number of leaves, and roots. High-latitude populations responded more strongly to warming than low-latitude populations, especially by increasing leaf area. Warming increased number of flowers in general, but only in the second year, while number of fruits increased in low-latitude populations the first year. Prolonged warming leads to an increase in both number of leaves and flowers over time. While reproduction shows varying and regional responses to warming, impacts on plant growth, especially in high-latitude populations, have more profound effects. Such effects could lead to changes in plant community composition with increased abundance of fast-growing plants with larger leaves and more clones, affecting plant competition and ecological functions such as decomposition and nutrient retention. Effects of warming were highly context dependent; thus, we encourage further use of warming experiments to predict changes in growth, reproduction, and community composition across wetland types and climate gradients targeting different plant forms.
RESUMO
The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.
Assuntos
Biodiversidade , Evolução Biológica , Ecologia , Modelos Biológicos , Distribuição Animal , Geografia , Características de História de Vida , Filogenia , Dispersão VegetalRESUMO
We used the largest DNA-based phylogeny of flowering plants to date to evaluate the importance of energy vs. past climate change in predicting global patterns in diversification. Relative diversification rates increased towards the equator, suggesting that differences in per-lineage net diversification may be an important component of the latitudinal diversity gradient. The amplitude of Quaternary climate oscillations experienced by families explained variation in diversification equally well compared to contemporary energy measures, and energy and climate change measures were intercorrelated, making it difficult to reject either as a causal mechanism. Many putative mechanisms linking diversification to energy availability do not apply to plants, whereas the climate change mechanism has more support. We also present the first global map of angiosperm diversification, showing that, after correcting for family range-size, tropical diversification rates were fastest for clades currently in regions with high endemic species richness outside the main lowland rainforest areas.
Assuntos
Ecossistema , Metabolismo Energético , Variação Genética , Efeito Estufa , Magnoliopsida/genética , Especiação Genética , Filogenia , Dinâmica PopulacionalRESUMO
Hydropeaking refers to frequent, rapid and short-term fluctuations in water flow and water levels downstream and upstream of hydropower stations. Such fluctuations are becoming increasingly common worldwide and are known to have far-reaching effects on riverine vegetation. Novel hydrology caused by hydropeaking has no natural correspondence in freshwater systems, and hence few species have adaptations to all its aspects. Here, we review the literature on hydropeaking effects on riverine plants and define the state of the information on this human alteration of riverine ecosystems. We focus on riparian plants, but also draw on information from aquatic plant species, which exhibit a wide variety of adaptations to inundation and associated processes. Riparian plants face both physiological and physical constraints because of the shifts between submergence and drainage, and erosion of substrates. At the population level, hydropeaking may favour dispersal within, but not between, reservoirs, but may hamper germination, establishment, growth and reproduction. At the community level, strong filtering towards easily dispersed, flexible, flood-tolerant and amphibious plants is expected, although few species share these traits. Hence, most riparian plant species are expected to disappear or be pushed towards the upper boundaries of the regulated river margin. Future research should examine more closely global variation in hydropeaking effects, including other taxonomic groups of species and the diversity of hydropeaking regimes. There is also a need for studies focusing on identifying the boundaries within which hydropeaking could operate without impairing plant life.
Assuntos
Plantas/classificação , Centrais Elétricas , Rios , Movimentos da Água , EcossistemaRESUMO
How individual species and entire ecosystems will respond to future climate change are among the most pressing questions facing ecologists. Past biodiversity dynamics recorded in the paleoecological archives show a broad array of responses, yet significant knowledge gaps remain. In particular, the relative roles of evolutionary adaptation, phenotypic plasticity, and dispersal in promoting survival during times of climate change have yet to be clarified. Investigating the paleo-archives offers great opportunities to understand biodiversity responses to future climate change. In this review we discuss the mechanisms by which biodiversity responds to environmental change, and identify gaps of knowledge on the role of range shifts and tolerance. We also outline approaches at the intersection of paleoecology, genomics, experiments, and predictive models that will elucidate the processes by which species have survived past climatic changes and enhance predictions of future changes in biological diversity.
Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Adaptação Fisiológica , Dinâmica PopulacionalRESUMO
Riparian zones are hotspots of plant species richness in temperate and boreal biomes. The phenomenon is believed to be caused primarily by river-related processes, and upland influences on riparian zones have received relatively little attention. We investigated the importance of discharge of groundwater derived from uplands on riparian patterns in vascular plant species composition. We found that groundwater discharge areas in riparian zones were 36-209% more species rich than non-discharge areas, depending on spatial scale (1-50 m wide transects from annual high-water levels to summer low-water levels) and river (one free-flowing and one regulated). Higher nitrogen availability and less drought stress during low river stages are suggested as the major causes for the higher species diversity in discharge areas. Riparian zones lacking groundwater discharge lost more species following water-level regulation than did discharge areas. This indicates that groundwater discharge areas are more resistant to regulation because both individual plants and plant populations may grow larger in discharge areas. These results demonstrate that riparian zones are controlled by water and nutrient input from upland parts of catchments in ways that have been overlooked despite more than three decades of research into linkages between stream ecosystems and their valleys.
Assuntos
Biodiversidade , Ecossistema , Fenômenos Fisiológicos Vegetais , Rios , Modelos Biológicos , SuéciaRESUMO
Fluvial processes such as flooding and sediment deposition play a crucial role in structuring riparian plant communities. In rivers throughout the world, these processes have been altered by channelization and other anthropogenic stresses. Yet despite increasing awareness of the need to restore natural flow regimes for the preservation of riparian biodiversity, few studies have examined the effects of river restoration on riparian ecosystems. In this study, we examined the effects of restoration in the Ume River system, northern Sweden, where tributaries were channelized to facilitate timber floating in the 19th and early 20th centuries. Restoration at these sites involved the use of heavy machinery to replace instream boulders and remove floatway structures that had previously lined stream banks and cut off secondary channels. We compared riparian plant communities along channelized stream reaches with those along reaches that had been restored 3-10 years prior to observation. Species richness and evenness were significantly increased at restored sites, as were floodplain inundation frequencies. These findings demonstrate how river restoration and associated changes in fluvial disturbance regimes can enhance riparian biodiversity. Given that riparian ecosystems tend to support a disproportionate share of regional species pools, these findings have potentially broad implications for biodiversity conservation at regional or landscape scales.