Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 73(2): 325-338.e8, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527664

RESUMO

The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.


Assuntos
Proteostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Endossomos/genética , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Vacúolos/enzimologia , Vacúolos/genética
2.
PLoS Genet ; 17(3): e1009414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690632

RESUMO

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


Assuntos
Fungos/efeitos dos fármacos , Fungos/enzimologia , Ácidos Indolacéticos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Elementos de DNA Transponíveis , Relação Dose-Resposta a Droga , Ativação Enzimática , Fungos/genética , Ácidos Indolacéticos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
3.
Mol Cell ; 46(1): 105-10, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22424774

RESUMO

The target of rapamycin complex 1 (TORC1) is an essential regulator of eukaryotic cell growth that responds to growth factors, energy levels, and amino acids. The mechanisms through which the preeminent amino acid leucine signals to the TORC1-regulatory Rag GTPases, which activate TORC1 within the yeast EGO complex (EGOC) or the structurally related mammalian Rag-Ragulator complex, remain elusive. We find that the leucyl-tRNA synthetase (LeuRS) Cdc60 interacts with the Rag GTPase Gtr1 of the EGOC in a leucine-dependent manner. This interaction is necessary and sufficient to mediate leucine signaling to TORC1 and is disrupted by the engagement of Cdc60 in editing mischarged tRNA(Leu). Thus, the EGOC-TORC1 signaling module samples, via the LeuRS-intrinsic editing domain, the fidelity of tRNA(Leu) aminoacylation as a proxy for leucine availability.


Assuntos
Leucina-tRNA Ligase/metabolismo , Leucina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Leucina/genética , Leucina-tRNA Ligase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
Mol Cell ; 38(3): 345-55, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20471941

RESUMO

Eukaryotic cell proliferation is controlled by growth factors and essential nutrients, in the absence of which cells may enter into a quiescent (G(0)) state. In yeast, nitrogen and/or carbon limitation causes downregulation of the conserved TORC1 and PKA signaling pathways and, consequently, activation of the PAS kinase Rim15, which orchestrates G(0) program initiation and ensures proper life span by controlling distal readouts, including the expression of specific genes. Here, we report that Rim15 coordinates transcription with posttranscriptional mRNA protection by phosphorylating the paralogous Igo1 and Igo2 proteins. This event, which stimulates Igo proteins to associate with the mRNA decapping activator Dhh1, shelters newly expressed mRNAs from degradation via the 5'-3' mRNA decay pathway, thereby enabling their proper translation during initiation of the G(0) program. These results delineate a likely conserved mechanism by which nutrient limitation leads to stabilization of specific mRNAs that are critical for cell differentiation and life span.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Fase de Repouso do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Carbono/metabolismo , Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Glucose/deficiência , Proteínas de Choque Térmico/genética , Mutação , Nitrogênio/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica
5.
EMBO J ; 26(21): 4501-13, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17914457

RESUMO

Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Fase G1 , Fosforilação , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
6.
Cell Rep ; 37(13): 110149, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965436

RESUMO

The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Fosfoproteínas/metabolismo , Proteínas Quinases/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma/análise , Saccharomyces cerevisiae/efeitos dos fármacos
7.
Dev Cell ; 8(6): 817-27, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15935772

RESUMO

The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.


Assuntos
Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Tamanho Corporal/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Contagem de Células/métodos , Membrana Celular/metabolismo , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Ativação Enzimática , Expressão Gênica/fisiologia , Genômica/métodos , Humanos , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Indóis , Biologia Molecular/métodos , Receptor de Insulina/metabolismo , Transfecção/métodos
8.
Curr Biol ; 16(8): 786-92, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16631586

RESUMO

Accurate and complete DNA replication is fundamental to maintain genome integrity. While the mechanisms and underlying machinery required to duplicate bulk genomic DNA are beginning to emerge, little is known about how cells replicate through damaged areas and special chromosomal regions such as telomeres, centromeres, and highly transcribed loci . Here, we have investigated the role of the yeast cullin Rtt101p in this process. We show that rtt101Delta cells accumulate spontaneous DNA damage and exhibit a G(2)/M delay, even though they are fully proficient to detect and repair chromosome breaks. Viability of rtt101Delta mutants depends on Rrm3p, a DNA helicase involved in displacing proteinaceous complexes at programmed pause sites . Moreover, rtt101Delta cells show hyperrecombination at forks arrested at replication fork barriers (RFBs) of ribosomal DNA. Finally, rtt101Delta mutants are sensitive to fork arrest induced by DNA alkylation, but not by nucleotide depletion. We therefore propose that the cullin Rtt101p promotes fork progression through obstacles such as DNA lesions or tightly bound protein-DNA complexes via a new mechanism involving ubiquitin-conjugation.


Assuntos
Proteínas Culina/fisiologia , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Reparo do DNA/fisiologia , Interfase/fisiologia , Metanossulfonato de Metila , Saccharomyces cerevisiae/citologia
9.
Mol Biol Cell ; 17(6): 2636-45, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16597698

RESUMO

The anchors of mature glycosylphosphatidylinositol (GPI)-anchored proteins of Saccharomyces cerevisiae contain either ceramide or diacylglycerol with a C26:0 fatty acid in the sn2 position. The primary GPI lipid added to newly synthesized proteins in the ER consists of diacylglycerol with conventional C16 and C18 fatty acids. Here we show that GUP1 is essential for the synthesis of the C26:0-containing diacylglycerol anchors. Gup1p is an ER membrane protein with multiple membrane-spanning domains harboring a motif that is characteristic of membrane-bound O-acyl-transferases (MBOAT). Gup1Delta cells make normal amounts of GPI proteins but most mature GPI anchors contain lyso-phosphatidylinositol, and others possess phosphatidylinositol with conventional C16 and C18 fatty acids. The incorporation of the normal ceramides into the anchors is also disturbed. As a consequence, the ER-to-Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. Gup1Delta cells have fragile cell walls and a defect in bipolar bud site selection. GUP1 function depends on the active site histidine of the MBOAT motif. GUP1 is highly conserved among fungi and protozoa and the gup1Delta phenotype is partially corrected by GUP1 homologues of Aspergillus fumigatus and Trypanosoma cruzi.


Assuntos
Aciltransferases/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Cinética , Lipídeos/fisiologia , Dados de Sequência Molecular , Mutação , Plasmídeos , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos
10.
Cell Rep ; 28(13): 3486-3496.e6, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553916

RESUMO

The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Espectrometria de Massas
11.
Cell Discov ; 3: 17012, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496991

RESUMO

Eukaryotic cell cycle progression through G1-S is driven by hormonal and growth-related signals that are transmitted by the target of rapamycin complex 1 (TORC1) pathway. In yeast, inactivation of TORC1 restricts G1-S transition due to the rapid clearance of G1 cyclins (Cln) and the stabilization of the B-type cyclin (Clb) cyclin-dependent kinase (CDK) inhibitor Sic1. The latter mechanism remains mysterious but requires the phosphorylation of Sic1-Thr173 by Mpk1 and inactivation of the Sic1-pThr173-targeting phosphatase (PP2ACdc55) through greatwall kinase-activated endosulfines. Here we show that the Sic1-pThr173 residue serves as a specific docking site for the CDK phospho-acceptor subunit Cks1 that sequesters, together with a C-terminal Clb5-binding motif in Sic1, Clb5-CDK-Cks1 complexes, thereby preventing them from flagging Sic1 for ubiquitin-dependent proteolysis. Interestingly, this functional switch of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1 also operates in proliferating cells and is coordinated by the greatwall kinase, which responds to both Cln-CDK-dependent cell-cycle and TORC1-mediated nutritional cues.

12.
Nat Commun ; 6: 8256, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26356805

RESUMO

The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1-S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCF(Cdc4) (Skp1/Cul1/F-box protein) ubiquitin ligase complex. Here we show that the stabilizing phosphorylation event within the C-terminus of Sic1 requires stimulation of the mitogen-activated protein kinase, Mpk1, and inhibition of the Cdc55 protein phosphatase 2A (PP2A(Cdc55)) by greatwall kinase-activated endosulfines. Thus, Mpk1 and the greatwall kinase pathway serve TORC1 to coordinate the phosphorylation status of Sic1 and consequently START with nutrient availability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Northern Blotting , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Citometria de Fluxo , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Peptídeos , Fosforilação , Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase/metabolismo
13.
PLoS One ; 9(8): e104194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117580

RESUMO

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.


Assuntos
Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ativação Enzimática , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosforilação , Ligação Proteica
14.
Cell Rep ; 3(1): 16-22, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23273919

RESUMO

The TORC1 and PKA protein kinases are central elements of signaling networks that regulate eukaryotic cell proliferation in response to growth factors and/or nutrients. In yeast, attenuation of signaling by these kinases following nitrogen and/or carbon limitation activates the protein kinase Rim15, which orchestrates the initiation of a reversible cellular quiescence program to ensure normal chronological life span. The molecular elements linking Rim15 to distal readouts including the expression of Msn2/4- and Gis1-dependent genes involve the endosulfines Igo1/2. Here, we show that Rim15, analogous to the greatwall kinase in Xenopus, phosphorylates endosulfines to directly inhibit the Cdc55-protein phosphatase 2A (PP2A(Cdc55)). Inhibition of PP2A(Cdc55) preserves Gis1 in a phosphorylated state and consequently promotes its recruitment to and activation of transcription from promoters of specific nutrient-regulated genes. These results close a gap in our perception of and delineate a role for PP2A(Cdc55) in TORC1-/PKA-mediated regulation of quiescence and chronological life span.


Assuntos
Peptídeos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sequência de Aminoácidos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/antagonistas & inibidores , Proteômica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Sirolimo/farmacologia , Coloração e Rotulagem
15.
Mol Microbiol ; 67(1): 202-12, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18036137

RESUMO

Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.


Assuntos
Aciltransferases/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Ácidos Graxos/metabolismo , Glicosilfosfatidilinositóis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Microssomos/enzimologia , Ácido Mirístico/metabolismo , Fenótipo , Proteínas de Protozoários/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Trypanosoma brucei brucei/genética , Leveduras/enzimologia , Leveduras/genética
16.
EMBO J ; 21(23): 6515-26, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12456658

RESUMO

Cdh1p is a substrate-specific subunit of the anaphase-promoting complex (APC/C), which functions as an E3 ubiquitin ligase to degrade the mitotic cyclin Clb2p and other substrates during the G(1) phase of the cell cycle. Cdh1p is phosphorylated and thereby inactivated at the G(1)/S transition predominantly by Cdc28p-Clb5p. Here we show that Cdh1p is nuclear during the G(1) phase of the cell cycle, but redistributes to the cytoplasm between S phase and the end of mitosis. Nuclear export of Cdh1p is regulated by phosphorylation and requires active Cdc28p kinase. Cdh1p binds to the importin Pse1p and the exportin Msn5p, which is necessary and sufficient to promote efficient export of Cdh1p in vivo. Although msn5delta cells are viable, they are sensitive to Cdh1p overexpression. Likewise, a mutant form of Cdh1p, which is constitutively nuclear, prevents accumulation of Clb2p and leads to cell cycle arrest when overexpressed in wild-type cells. Taken together, these results suggest that phosphorylation-dependent nuclear export of Cdh1p by Msn5p contributes to efficient inactivation of APC/C(Cdh1).


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Carioferinas , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Transporte Ativo do Núcleo Celular , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Transporte/metabolismo , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação
17.
EMBO J ; 21(7): 1565-76, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927541

RESUMO

In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas Inibidoras de Quinase Dependente de Ciclina , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Morfogênese , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA