Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 30(5): 053138, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32491917

RESUMO

Homogeneously driven dynamical systems exhibit multistability. Depending on the initial conditions, fronts present a rich dynamical behavior between equilibria. Qualitatively, this phenomenology is persistent under spatially modulated forcing. However, the understanding of equilibria and front dynamics organization is not fully established. Here, we investigate these phenomena in the high-wavenumber limit. Based on a model that describes the reorientation transition of a liquid crystal light valve with spatially modulated optical forcing and the homogenization method, equilibria and fronts as a function of forcing parameters are studied. The forcing induces patterns coexisting with the uniform state in regions where the system without forcing is monostable. The front dynamics is characterized theoretically and numerically. Experimental results verify these phenomena and the law describing bistability, showing quite good agreement.

2.
Phys Rev E ; 104(4-1): 044209, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781469

RESUMO

Particle-type solutions are observed in out-of-equilibrium systems. These states can be motionless, oscillatory, or propagative depending on the injection and dissipation of energy. We investigate a family of localized standing waves based on a liquid-crystal light valve with spatiotemporal modulated optical feedback. These states are nonlinear waves in which energy concentrates in a localized and oscillatory manner. The organization of the family of solutions is characterized as a function of the applied voltage. Close to the reorientation transition, an amplitude equation allows us to elucidate the origin of these localized states and establish their bifurcation diagram. Theoretical findings are in qualitative agreement with experimental observations. Our results open the possibility of manipulating localized states induced by light, which can be used to expand and improve the storage and manipulation of information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA