Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Eye Res ; 244: 109945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815792

RESUMO

Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.


Assuntos
Consanguinidade , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Humanos , Paquistão , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Mutação , Adulto , Adolescente , Análise Mutacional de DNA , Adulto Jovem , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/diagnóstico , Pré-Escolar , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Testes Genéticos/métodos , Sequenciamento Completo do Genoma
2.
Genes (Basel) ; 14(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37628625

RESUMO

Anophthalmia and microphthalmia (A/M) are among the most severe congenital developmental eye disorders. Despite the advancements in genome screening technologies, more than half of A/M patients do not receive a molecular diagnosis. We included seven consanguineous families affected with A/M from Pakistani cohort and an unknown molecular basis. Single gene testing of FOXE3 was performed, followed by genome sequencing for unsolved probands in order to establish a genetic diagnosis for these families. All seven families were provided with a genetic diagnosis. The identified variants were all homozygous, classified as (likely) pathogenic and present in an A/M-associated gene. Targeted FOXE3 sequencing revealed two previously reported pathogenic FOXE3 variants in four families. In the remaining families, genome sequencing revealed a known pathogenic PXDN variant, a novel 13bp deletion in VSX2, and one novel deep intronic splice variant in PXDN. An in vitro splice assay was performed for the PXDN splice variant which revealed a severe splicing defect. Our study confirmed the utility of genome sequencing as a diagnostic tool for A/M-affected individuals. Furthermore, the identification of a novel deep intronic pathogenic variant in PXDN highlights the role of non-coding variants in A/M-disorders and the value of genome sequencing for the identification of this type of variants.


Assuntos
Anoftalmia , Anormalidades do Olho , Microftalmia , Humanos , Anoftalmia/diagnóstico , Anoftalmia/genética , Microftalmia/diagnóstico , Microftalmia/genética , Mapeamento Cromossômico , Testes Genéticos
3.
Invest Ophthalmol Vis Sci ; 59(11): 4552-4557, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30208423

RESUMO

Purpose: Retinitis pigmentosa (RP) is a genetically heterogeneous trait with autosomal-recessive (ar) inheritance underlying 50% of genetic disease cases. Sixty-one arRP genes have been identified, and recently, DHX38 has been reported as a potential candidate gene for arRP with only a single family reported with a variant of unknown significance. We identified a missense variant in DHX38 that co-segregates with the arRP phenotype in two Pakistani families confirming the involvement of DHX38 in the etiology of early-onset RP. Methods: Exome sequencing was performed using two DNA samples from affected members of Pakistani families (MA88 and MA157) with early onset arRP. Sanger sequencing of DNA samples from all family members confirmed the segregation of candidate variant within both families. Results: A novel missense DHX38 variant c.971G>A; p.(Arg324Gln) was identified which segregates with the arRP phenotype and yielded a logarithm of the odds (LOD) score of 5.0 and 4.3 for families MA88 and MA157, respectively. This variant is predicted to be conserved and deleterious by several bioinformatics tools. Conclusions: We identified a second deleterious DHX38 variant that segregates with arRP in two families, providing additional evidence that DHX38 is involved in RP etiology. DHX38 encodes for pre-mRNA splicing factor PRP16, which is important in catalyzing pre-mRNA splicing.


Assuntos
RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Fatores de Processamento de RNA/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Catarata/genética , Biologia Computacional , Feminino , Genes Recessivos , Estudos de Associação Genética , Ligação Genética , Humanos , Masculino , Mapeamento de Nucleotídeos , Oftalmoscopia , Linhagem , Análise de Sequência de DNA , Sequenciamento do Exoma , Adulto Jovem
4.
Sci Rep ; 5: 9965, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943428

RESUMO

Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.


Assuntos
Mapeamento Cromossômico/métodos , Consanguinidade , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Displasia Retiniana/genética , Adolescente , Adulto , Criança , Família , Feminino , Marcadores Genéticos/genética , Homozigoto , Humanos , Masculino , Mutação/genética , Paquistão , Linhagem , Análise de Sequência de DNA/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA