Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
NMR Biomed ; : e5225, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107878

RESUMO

Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.

2.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712359

RESUMO

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Assuntos
Artérias , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Perfusão
3.
J Neurooncol ; 165(3): 479-486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095775

RESUMO

BACKGROUND AND PURPOSE: Brain tumors are in general treated with a maximal safe resection followed by radiotherapy of remaining tumor including the resection cavity (RC) and chemotherapy. Anatomical changes of the RC during radiotherapy can have impact on the coverage of the target volume. The aim of the current study was to quantify the potential changes of the RC and to identify risk factors for RC changes. MATERIALS AND METHODS: Sixteen patients treated with pencil beam scanning proton therapy between October 2019 and April 2020 were retrospectively analyzed. The RC was delineated on pre-treatment computed tomography (CT) and magnetic resonance imaging, and weekly CT-scans during treatment. Isotropic expansions were applied to the pre-treatment RC (1-5 mm). The percentage of volume of the RC during treatment within the expanded pre-treatment volumes was quantified. Potential risk factors (volume of RC, time interval surgery-radiotherapy and relationship of RC to the ventricles) were evaluated using Spearman's rank correlation coefficient. RESULTS: The average variation in relative RC volume during treatment was 26.1% (SD 34.6%). An expansion of 4 mm was required to cover > 95% of the RC volume in > 90% of patients. There was a significant relationship between the absolute volume of the pre-treatment RC and the volume changes during treatment (Spearman's ρ = - 0.644; p = 0.007). CONCLUSION: RCs are dynamic after surgery. Potentially, an additional margin in brain cancer patients with an RC should be considered, to avoid insufficient target coverage. Future research on local recurrence patterns is recommended.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Terapia Combinada , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Dosagem Radioterapêutica
4.
MAGMA ; 35(1): 127-143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129718

RESUMO

As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO2), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO2 to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Volume Sanguíneo Cerebral , Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38681951

RESUMO

This retrospective study examined bone flap displacement during radiotherapy in 25 post-operative brain tumour patients. Though never exceeding 2.5 mm, the sheer frequency of displacement highlights the need for future research on larger populations to validate its presence and assess the potential clinical impact on planning tumour volume margins.

6.
Radiother Oncol ; 184: 109674, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084885

RESUMO

OBJECTIVE: The interpretation of new enhancing lesions after radiotherapy for diffuse glioma remains a clinical challenge. We sought to characterize and classify new contrast enhancing lesions in a historical multicenter cohort of patients with IDH mutated grade 2 diffuse glioma treated with photon therapy. METHODS: We reviewed all follow-up MRI's of all patients treated with radiotherapy for histologically confirmed, IDH mutated diffuse grade 2 glioma between 1-1-2007 and 31-12-2018 in two tertiary referral centers. Disease progression (PD) was defined in accordance with the RANO criteria for progressive disease in low grade glioma. Pseudoprogression (psPD) was defined as any transient contrast-enhancing lesion between the end of radiotherapy and PD, or any new contrast-enhancing lesion that remained stable over a period of 12 months in patients who did not exhibit PD. RESULTS: A total of 860 MRI's of 106 patients were reviewed. psPD was identified in 24 patients (23%) on 76 MRI's. The cumulative incidence of psPD was 13% at 1 year, 22% at 5 years, and 28% at 10 years. The mean of the observed maximal volume of psPD was 2.4 cc. The median Dmin in psPD lesions was 50.1 Gy. The presence of an 1p/19q codeletion was associated with an increased risk of psPD (subhazard ratio 2.34, p = 0.048). psPD was asymptomatic in 83% of patients. CONCLUSION: The cumulative incidence of psPD in grade 2 diffuse glioma increases over time. Consensus regarding event definition and statistical analysis is needed for comparisons between series investigating psPD.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioma/genética , Glioma/radioterapia , Glioma/patologia , Imageamento por Ressonância Magnética , Progressão da Doença , Mutação , Isocitrato Desidrogenase/genética , Estudos Multicêntricos como Assunto
7.
J Natl Cancer Cent ; 3(2): 135-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39035727

RESUMO

Objective: NCT01780675, a multicenter randomized phase III trial of prophylactic cranial irradiation (PCI) versus PCI with hippocampal sparing in small cell lung cancer (SCLC) investigated neurocognitive decline and safety. As part of quality assurance, we evaluated if hippocampal avoidance (HA)-PCI was performed according to the NCT01780675 trial protocol instructions, and performed a safety analysis to study the incidence and location of brain metastases for patients treated with HA-PCI. Methods: This retrospective analysis evaluated the quality of the irradiation given in the randomized controlled trial (RCT) comparing SCLC patients receiving PCI with or without hippocampal avoidance, using intensity modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT). The dose distribution for each patient receiving HA-PCI was retrieved and analyzed to evaluate if the treatment dose constraints were met. A questionnaire was sent out to all participating sites, and data on radiotherapy technique, pre-treatment dummy runs, phantom measurements and treatment electronic portal imaging device (EPID) dosimetry were collected and analyzed. As part of the safety analysis, the follow-up magnetic resonance imaging (MRI) or computerized tomography (CT) scans on which cranial disease progression was first diagnosed were collected and matched to the radiotherapy planning dose distribution. The matched scans were reviewed to analyze the location of the brain metastases in relation to the prescribed dose. Results: A total of 168 patients were randomized in the NCT01780675 trial in 10 centers in the Netherlands and Belgium from April 2013 until March 2018. Eighty two patients receiving HA-PCI without evidence of brain metastases were analyzed. All patients were treated with 25 Gy in 10 fractions. Dummy runs and phantom measurements were performed in all institutions prior to enrolling patients into the study. The radiotherapy (RT) plans showed a median mean bilateral hippocampal dose of 8.0 Gy, range 5.4-11.4 (constraint ≤ 8.5 Gy). In six patients (7.3%) there was a protocol violation of the mean dose in one or both hippocampi. In four of these six patients (4.9%) the mean dose to both hippocampi exceeded the constraint, in 1 patient (1.2%) only the left and in 1 patient (1.2%) only the right hippocampal mean dose was violated (average median dose left and right 8.9 Gy). All patients met the trial dose constraint of V 115% PTV ≤ 1%; however the D max PTV constraint of ≤ 28.75 Gy was violated in 22.0% of the patients. The safety analysis showed that 14 patients (17.1%) developed cranial progression. No solitary brain metastases in the underdosed region were found. Two out of 11 patients with multiple brain metastasis developed metastasis in the underdosed region(s). Conclusions: The radiotherapy quality within the HA-PCI trial is performed according to the protocol guidelines. The dose constraints to the hippocampi are met in the vast majority of cases. In all patients, the volume of the brain for which a higher dose was accepted, is according to the trial. However, within this volume there are small areas with higher doses than advised.

8.
Sci Rep ; 12(1): 21820, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528673

RESUMO

Quantitative MR imaging is becoming more feasible to be used in clinical work since new approaches have been proposed in order to substantially accelerate the acquisition and due to the possibility of synthetically deriving weighted images from the parametric maps. However, their applicability has to be thoroughly validated in order to be included in clinical practice. In this pilot study, we acquired Magnetic Resonance Image Compilation scans to obtain T1, T2 and PD maps in 14 glioma patients. Abnormal tissue was segmented based on conventional images and using a deep learning segmentation technique to define regions of interest (ROIs). The quantitative T1, T2 and PD values inside ROIs were analyzed using the mean, the standard deviation, the skewness and the kurtosis and compared to the quantitative T1, T2 and PD values found in normal white matter. We found significant differences in pre-contrast T1 and T2 values between abnormal tissue and healthy tissue, as well as between T1w-enhancing and non-enhancing regions. ROC analysis was used to evaluate the potential of quantitative T1 and T2 values for voxel-wise classification of abnormal/normal tissue (AUC = 0.95) and of T1w enhancement/non-enhancement (AUC = 0.85). A cross-validated ROC analysis found high sensitivity (73%) and specificity (73%) with AUCs up to 0.68 on the a priori distinction between abnormal tissue with and without T1w-enhancement. These results suggest that normal tissue, abnormal tissue, and tissue with T1w-enhancement are distinguishable by their pre-contrast quantitative values but further investigation is needed.


Assuntos
Glioma , Substância Branca , Humanos , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Curva ROC
9.
J Thorac Oncol ; 16(5): 840-849, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545387

RESUMO

INTRODUCTION: To compare neurocognitive functioning in patients with SCLC who received prophylactic cranial irradiation (PCI) with or without hippocampus avoidance (HA). METHODS: In a multicenter, randomized phase 3 trial (NCT01780675), patients with SCLC were randomized to standard PCI or HA-PCI of 25 Gy in 10 fractions. Neuropsychological tests were performed at baseline and 4, 8, 12, 18, and 24 months after PCI. The primary end point was total recall on the Hopkins Verbal Learning Test-Revised at 4 months; a decline of at least five points from baseline was considered a failure. Secondary end points included other cognitive outcomes, evaluation of the incidence, location of brain metastases, and overall survival. RESULTS: From April 2013 to March 2018, a total of 168 patients were randomized. The median follow-up time was 26.6 months. In both treatment arms, 70% of the patients had limited disease and baseline characteristics were well balanced. Decline on the Hopkins Verbal Learning Test-Revised total recall score at 4 months was not significantly different between the arms: 29% of patients on PCI and 28% of patients on HA-PCI dropped greater than or equal to five points (p = 1.000). Performance on other cognitive tests measuring memory, executive function, attention, motor function, and processing speed did not change significantly different over time between the groups. The overall survival was not significantly different (p = 0.43). The cumulative incidence of brain metastases at 2 years was 20% (95% confidence interval: 12%-29%) for the PCI arm and 16% (95% confidence interval: 7%-24%) for the HA-PCI arm. CONCLUSIONS: This randomized phase 3 trial did not find a lower probability of cognitive decline in patients with SCLC receiving HA-PCI compared with conventional PCI. No increase in brain metastases at 2 years was observed in the HA-PCI arm.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Irradiação Craniana/efeitos adversos , Hipocampo , Humanos , Carcinoma de Pequenas Células do Pulmão/radioterapia
10.
Front Oncol ; 9: 991, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681562

RESUMO

Purpose: To evaluate the performance of the hippocampal normal tissue complication model that relates dose to the bilateral hippocampus to memory impairment at 18 months post-treatment in a population of low-grade glioma (LGG) patients. Methods: LGG patients treated within the radiotherapy-only arm of the EORTC 22033-26033 trial were analyzed. Hippocampal dose parameters were calculated from the original radiotherapy plans. Difference in Rey Verbal Auditory Learning test delayed recall (AVLT-DR) performance pre-and 18 (±4) months post-treatment was compared to reference data from the Maastricht Aging study. The NTCP model published by Gondi et al. was applied to the dosimetric data and model predictions were compared to actual neurocognitive outcome. Results: A total of 29 patients met inclusion criteria. Mean dose in EQD2 Gy to the bilateral hippocampus was 39.8 Gy (95% CI 34.3-44.4 Gy), the median dose to 40% of the bilateral hippocampus was 47.2 EQD2 Gy. The model predicted a risk of memory impairment exceeding 99% in 22 patients. However, only seven patients were found to have a significant decline in AVLT-dr score. Conclusions: In this dataset of only LGG patients treated with radiotherapy the hippocampus NTCP model did not perform as expected to predict cognitive decline based on dose to 40% of the bilateral hippocampus. Caution should be taken when extrapolating this model outside of the range of dose-volume parameters in which it was developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA