Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103256, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959622

RESUMO

Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.

2.
JACS Au ; 4(5): 1833-1840, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818080

RESUMO

Neocarzilin (NCA) is a natural product exhibiting potent antimigratory as well as antiproliferative effects. While vesicle amine transport protein 1 (VAT-1) was previously shown to inhibit migration upon NCA binding, the molecular mechanisms responsible for impaired proliferation remained elusive. We here introduce a chemical probe closely resembling the structural and stereochemical features of NCA and unravel bone marrow stromal antigen 2 (BST-2) as one of the targets responsible for the antiproliferative effect of NCA in cancer cells. The antiproliferative mechanism of NCA was confirmed in corresponding BST-2 knockout (KO) HeLa cells, which were less sensitive to compound treatment. Vice versa, reconstitution of BST-2 in the KO cells again reduced proliferation upon NCA addition, comparable to that of wild-type (wt) HeLa cells. Whole proteome mass spectrometric (MS) analysis of NCA-treated wt and KO cancer cells revealed regulated pathways and showed reduced levels of BST-2 upon NCA treatment. In-depth analysis of BST-2 levels in response to proteasome and lysosome inhibitors unraveled a lysosomal degradation path upon NCA treatment. As BST-2 mediates the release of epidermal growth factor receptor (EGFR) from lipid rafts to turn on proliferation signaling pathways, reduced BST-2 levels led to attenuated phosphorylation of STAT3. Furthermore, fluorescence microscopy confirmed increased colocalization of EGFR and lipid rafts in the presence of NCA. Overall, NCA represents a versatile anticancer natural product with a unique dual mode of action and unconventional inhibition of proliferation via BST-2 degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA