Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Mater ; 23(6): 741-746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740956

RESUMO

Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov-de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth's Rashba surface states and topological boundary modes1-3. Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure.

2.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364168

RESUMO

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

3.
Nat Mater ; 20(4): 480-487, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398121

RESUMO

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.

4.
Nano Lett ; 19(6): 3543-3547, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117747

RESUMO

We realize a new electroplasmonic switch based upon electrically tunable exciton-plasmon interactions. The device consists of a hexagonal boron nitride (hBN)-encapsulated tungsten diselenide (WSe2) monolayer on top of a single-crystalline silver substrate. The ultrasmooth silver substrate serves a dual role as the medium to support surface plasmon polaritons (SPPs) and the bottom gate electrode to tune the WSe2 exciton energy and brightness through electrostatic doping. To enhance the exciton-plasmon coupling, we implement a plasmonic crystal cavity on top of the hBN/WSe2/hBN/Ag heterostructure with a quality factor reaching 550. The tight confinement of the SPPs in the plasmonic cavity enables strong coupling between excitons and SPPs when the WSe2 exciton absorption is resonant with the cavity mode, leading to a vacuum Rabi splitting of up to 18 meV. This strong coupling can also be switched off with the application of a modest gate voltage that increases the doping density in the monolayer. This demonstration paves the way for new plasmonic modulators and a general device architecture to enhance light-matter interactions between SPPs and various embedded emitters.

5.
Phys Rev Lett ; 120(3): 037402, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400519

RESUMO

We demonstrate that a single layer of MoSe_{2} encapsulated by hexagonal boron nitride can act as an electrically switchable mirror at cryogenic temperatures, reflecting up to 85% of incident light at the excitonic resonance. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor. We show that the MoSe_{2} monolayer exhibits power-and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used.

6.
Nano Lett ; 17(8): 4781-4786, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28691487

RESUMO

Monolayer MoS2, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS2, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kΩ.µm at a carrier density of 5.3 × 1012/cm2. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS2 at much lower carrier densities compared to previous work.

7.
Nano Lett ; 13(8): 3594-601, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23859121

RESUMO

Two new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO' mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry. The dependence of this mode's frequency and line width on the rotational angle can be explained by the double resonance Raman process that is different from the previously identified Raman processes activated by twisted bilayer graphene superlattice. The dependence also reveals the strong impact of electronic-band overlaps of the two graphene layers. Another new mode at ~52 cm(-1), not observed previously in the bilayer graphene system, is tentatively attributed to a torsion mode in which the bottom and top graphene layers rotate out-of-phase in the plane.

8.
Nat Commun ; 15(1): 6743, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112505

RESUMO

Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density. By electrically modulating the IE Stark shift, electron-hole pair concentrations above 2 × 1012 cm-2 can be achieved. At this high IE density, we observe an exponentially increasing linewidth broadening indicative of an IE ionization transition, independent of the trap depth. This runaway threshold remains constant at low temperatures, but increases above 20 K, consistent with the quantum dissociation of a degenerate IE gas. Our demonstration of the IE ionization in a tunable electrostatic trap represents an important step towards the realization of dipolar exciton condensates in solid-state optoelectronic devices.

9.
Nat Commun ; 15(1): 332, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184667

RESUMO

The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5 samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5 and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5 as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures.

10.
Nat Mater ; 16(12): 1169-1170, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170547

Assuntos
Elétrons , Molibdênio
11.
Nano Lett ; 12(2): 540-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214524

RESUMO

Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance.


Assuntos
Cobre/química , Nanopartículas/química , Sulfetos/química , Termodinâmica , Estanho/química , Zinco/química , Conservação de Recursos Energéticos , Eletricidade , Tamanho da Partícula , Propriedades de Superfície
12.
Nano Lett ; 12(1): 56-60, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111899

RESUMO

A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based bulk materials, our nanowire devices exhibit an enhanced ZT of 0.96 peaked at 380 K due to a significant reduction of thermal conductivity derived from phonon scattering at the nanoscale interfaces in the bulk pellets, which corresponds to a 13% enhancement compared to that of the best n-type commercial Bi(2)Te(2.7)Se(0.3) single crystals (~0.85) and is comparable to the best reported result of n-type Bi(2)Te(2.7)Se(0.3) sample (ZT = 1.04) fabricated by the hot pressing of ball-milled powder. The uniformity and high yield of the nanowires provide a promising route to make significant contributions to the manufacture of nanotechnology-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliable and a reproducible way.


Assuntos
Bismuto/química , Cristalização/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Semicondutores , Telúrio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Condutividade Térmica
13.
Nano Lett ; 12(7): 3627-33, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22731993

RESUMO

We present a design principle to develop new categories of telluride-based thermoelectric nanowire heterostructures through rational solution-phase reactions. The catalyst-free synthesis yields Te-Bi(2)Te(3) "barbell" nanowire heterostructures with a narrow diameter and length distribution as well as a rough control over the density of the hexagonal Bi(2)Te(3) plates on the Te nanowire bodies, which can be further converted to other telluride-based compositional-modulated nanowire heterostructures such as PbTe-Bi(2)Te(3). Initial characterizations of the hot-pressed nanostructured bulk pellets of the Te-Bi(2)Te(3) heterostructure show a largely enhanced Seebeck coefficient and greatly reduced thermal conductivity, which lead to an improved thermoelectric figure of merit. This approach opens up new platforms to investigate the phonon scattering and energy filtering.

14.
Nat Mater ; 10(6): 443-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552269

RESUMO

The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman 'D' peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

15.
Nanotechnology ; 22(29): 295705, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21677372

RESUMO

We have performed scanning gate microscopy (SGM) on graphene field effect transistors (GFET) using a biased metallic nanowire coated with a dielectric layer as a contact mode tip and local top gate. Electrical transport through graphene at various back gate voltages is monitored as a function of tip voltage and tip position. Near the Dirac point, the response of graphene resistance to the tip voltage shows significant variation with tip position, and SGM imaging displays mesoscopic domains of electron-doped and hole-doped regions. Our measurements reveal substantial spatial fluctuation in the carrier density in graphene due to extrinsic local doping from sources such as metal contacts, graphene edges, structural defects and resist residues. Our scanning gate measurements also demonstrate graphene's excellent capability to sense the local electric field and charges.

16.
J Phys Condens Matter ; 33(49)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34521077

RESUMO

Decoherence in quantum bits (qubits) is a major challenge for realizing scalable quantum computing. One of the primary causes of decoherence in qubits and quantum circuits based on superconducting Josephson junctions is the critical current fluctuation. Many efforts have been devoted to suppressing the critical current fluctuation in Josephson junctions. Nonetheless, the efforts have been hindered by the defect-induced trapping states in oxide-based tunnel barriers and the interfaces with superconductors in the traditional Josephson junctions. Motivated by this, along with the recent demonstration of 2D insulatorh-BN with exceptional crystallinity and low defect density, we fabricated a vertical NbSe2/h-BN/Nb Josephson junction consisting of a bottom NbSe2superconductor thin layer and a top Nb superconductor spaced by an atomically thinh-BN layer. We further characterized the superconducting current and voltage (I-V) relationships and Fraunhofer pattern of the NbSe2/h-BN/Nb junction. Notably, we demonstrated the critical current noise (1/fnoise power) in theh-BN-based Josephson device is at least a factor of four lower than that of the previously studied aluminum oxide-based Josephson junctions. Our work offers a strong promise ofh-BN as a novel tunnel barrier for high-quality Josephson junctions and qubit applications.

17.
J Phys Chem B ; 113(18): 6230-9, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19402724

RESUMO

We calculate the transverse current through double-stranded DNA nucleotides using ab initio techniques in order to establish a protocol to recognize the type and sequence of double-stranded DNA nucleotides. The distinct current-voltage features between nucleotides are used as signatures for their characterization and sequencing. Extended bulk gold electrodes as well as extensions of the DNA backbones are tested as contacts for the electron transport, yielding currents 2 orders of magnitude larger for the former. The addition of Na or H positive counterions improves the signal levels, thus leading to a better discrimination, especially when sodium cations are added.


Assuntos
DNA/química , Elétrons , Modelos Moleculares , Conformação de Ácido Nucleico
18.
J Chem Phys ; 130(10): 105101, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19292557

RESUMO

A sensor model based on the porphyrin nucleus of the soluble guanylate cyclase enzyme is modeled and tested with nitric oxide and carbon monoxide. Molecular oxygen is tested as a possible interferer. Geometries and electronic structures of the model are assessed by density functional theory. Vibrational circular dichroism (VCD), infrared, and Raman spectra are obtained for the iron complexes uncoordinated and coordinated with the gas moieties. The sensor is capable of detecting the ligands to different extents. Carbon monoxide is less detectable than nitric oxide due to the adopted position of the molecule in the sensor; carbon oxide is aligned with the iron atom, while nitric oxide and molecular oxygens bend with an angle detectable by the VCD. It is suggested that pollutants may be detected and measured with the proposed biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Gases/análise , Heme/química , Oxigênio/análise , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Guanilato Ciclase/química , Modelos Moleculares , Óxido Nítrico/análise
19.
Science ; 366(6467): 870-875, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727834

RESUMO

A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.

20.
Nat Commun ; 10(1): 4487, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582738

RESUMO

Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride interacting with the surrounding dielectric environment comprising the low-loss phase change material Ge3Sb2Te6. We demonstrate rewritable waveguides, refractive optical elements such as lenses, prisms, and metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. This method will enable the realization of programmable miniaturized integrated optoelectronic devices and on-demand biosensors based on high quality phonon resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA