Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 295(52): 18379-18389, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122192

RESUMO

The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity.


Assuntos
5'-Nucleotidase/química , 5'-Nucleotidase/imunologia , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Neoplasias Pulmonares/imunologia , 5'-Nucleotidase/metabolismo , Domínio Catalítico , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Conformação Proteica , Células Tumorais Cultivadas
2.
MAbs ; 12(1): 1814583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32892677

RESUMO

Antibodies mediate effector functions through Fcγ receptor (FcγR) interactions and complement activation, causing cytokine release, degranulation, phagocytosis, and cell death. They are often undesired for development of therapeutic antibodies where only antigen binding or neutralization would be ideal. Effector elimination has been successful with extensive mutagenesis, but these approaches can potentially lead to manufacturability and immunogenicity issues. By switching the native glycosylation site from position 297 to 298, we created alternative antibody glycosylation variants in the receptor interaction interface as a novel strategy to eliminate the effector functions. The engineered glycosylation site at Asn298 was confirmed by SDS-PAGE, mass spectrometry, and X-ray crystallography (PDB code 6X3I). The lead NNAS mutant (S298N/T299A/Y300S) shows no detectable binding to mouse or human FcγRs by surface plasmon resonance analyses. The effector functions of the mutant are completely eliminated when measured in antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. In vivo, the NNAS mutant made on an antibody against a human lymphocyte antigen does not deplete T cells or B cells in transgenic mice, in contrast to wild-type antibody. Structural study confirms the successful glycosylation switch to the engineered Asn298 site. The engineered glycosylation would clash with approaching FcγRs based on reported Fc-FcγR co-crystal structures. In addition, the NNAS mutants of multiple antibodies retain binding to antigens and neonatal Fc receptor, exhibit comparable purification yields and thermal stability, and display normal circulation half-life in mice and non-human primate. Our work provides a novel approach for generating therapeutic antibodies devoid of any ADCC and CDC activities with potentially lower immunogenicity.


Assuntos
Substituição de Aminoácidos , Ativação do Complemento , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/imunologia , Fragmentos Fc das Imunoglobulinas , Mutação de Sentido Incorreto , Receptores Fc/imunologia , Animais , Células CHO , Cricetulus , Glicosilação , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Receptores Fc/genética
3.
Oncoimmunology ; 9(1): 1811605, 2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33224628

RESUMO

TGFß is a pleiotropic cytokine that may have both tumor inhibiting and tumor promoting properties, depending on tissue and cellular context. Emerging data support a role for TGFß in suppression of antitumor immunity. Here we show that SAR439459, a pan-TGFß neutralizing antibody, inhibits all active isoforms of human and murine TGFß, blocks TGFß-mediated pSMAD signaling, and TGFß-mediated suppression of T cells and NK cells. In vitro, SAR439459 synergized with anti-PD1 to enhance T cell responsiveness. In syngeneic tumor models, SAR439459 treatment impaired tumor growth, while the combination of SAR439459 with anti-PD-1 resulted in complete tumor regression and a prolonged antitumor immunity. Mechanistically, we found that TGFß inhibition with PD-1 blockade augmented intratumoral CD8+ T cell proliferation, reduced exhaustion, evoked proinflammatory cytokines, and promoted tumor-specific CD8+ T cell responses. Together, these data support the hypothesis that TGFß neutralization using SAR439459 synergizes with PD-1 blockade to promote antitumor immunity and formed the basis for the ongoing clinical investigation of SAR439459 in patients with cancer (NCT03192345).


Assuntos
Terapia de Imunossupressão , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Humanos , Tolerância Imunológica , Camundongos
4.
MAbs ; 11(7): 1276-1288, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216930

RESUMO

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.


Assuntos
Bioengenharia/métodos , Antígenos de Histocompatibilidade Classe I/química , Receptores Fc/química , Receptores de IgG/química , Animais , Circulação Sanguínea , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Concentração de Íons de Hidrogênio , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteólise , Receptores Fc/genética , Fator Reumatoide
5.
MAbs ; 11(7): 1266-1275, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199181

RESUMO

Deamidation evaluation and mitigation is an important aspect of therapeutic antibody developability assessment. We investigated the structure and function of the Asn-Gly deamidation in a human anti-CD52 IgG1 antibody light chain complementarity-determining region 1, and risk mitigation through protein engineering. Antigen binding affinity was found to decrease about 400-fold when Asn33 was replaced with an Asp residue to mimic the deamidation product, suggesting significant impacts on antibody function. Other variants made at Asn33 (N33H, N33Q, N33H, N33R) were also found to result in significant loss of antigen binding affinity. The co-crystal structure of the antigen-binding fragment bound to a CD52 peptide mimetic was solved at 2.2Å (PDB code 6OBD), which revealed that Asn33 directly interacts with the CD52 phosphate group via a hydrogen bond. Gly34, but sits away from the binding interface, rendering it more amendable to mutagenesis without affecting affinity. Saturation mutants at Gly34 were prepared and subjected to forced deamidation by incubation at elevated pH and temperature. Three mutants (G34R, G34K and G34Q) showed increased resistance to deamidation by LC-MS peptide mapping, while maintaining high binding affinity to CD52 antigen measured by Biacore. A complement -dependent cytotoxicity assay indicated that these mutants function by triggering antibody effector function. This study illustrates the importance of structure-based design and extensive mutagenesis to mitigate antibody developability issues.


Assuntos
Anticorpos Monoclonais/química , Antígeno CD52/química , Regiões Determinantes de Complementaridade/química , Imunoglobulina G/química , Cadeias Leves de Imunoglobulina/química , Amidas/química , Anticorpos Monoclonais/genética , Citotoxicidade Celular Dependente de Anticorpos , Asparagina/genética , Bioengenharia , Antígeno CD52/genética , Antígeno CD52/imunologia , Regiões Determinantes de Complementaridade/genética , Cristalografia por Raios X , Humanos , Imunoglobulina G/genética , Cadeias Leves de Imunoglobulina/genética , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Am J Physiol Lung Cell Mol Physiol ; 285(2): L354-62, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12679320

RESUMO

Previously we have shown that treatment of confluent, pulmonary fibroblast cultures with elastase results in upregulation of elastin mRNA and protein levels. In the present study we focused on determining the level at which elastin expression is upregulated after elastase exposure. We examined as models for this investigation elastin gene expression in primary pulmonary fibroblast cells during the transition from subconfluent to confluent cultures and in confluent, matrix-laden cultures treated briefly with elastase. In addition, we extended our studies to mice that were given an intratracheal dose of elastase; the effects on lung elastin mRNA and elastin promoter activity levels were measured and compared with results from in vitro cell models. The results demonstrate that upregulation of elastin gene expression during the transition of subconfluent to confluent cultures and after elastase injury is associated with an increase in the level of transcription both in vitro and in vivo. Furthermore, intratracheal administration of elastase to transgenic mice illustrates that the increased levels of elastin mRNA are accompanied by increased activity of the elastin gene promoter in cells spatially positioned near major sites of tissue injury.


Assuntos
Elastina/genética , Regulação da Expressão Gênica , Pulmão/patologia , Elastase Pancreática/toxicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Cinética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA