Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(27): 10844-10851, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251601

RESUMO

A synthetic orthogonal polymer embracing a chiral acyclic-phosphonate backbone [(S)-ZNA] is presented that uniquely adds to the emerging family of xenobiotic nucleic acids (XNAs). (S)-ZNA consists of reiterating six-atom structural units and can be accessed in few synthetic steps from readily available phophonomethylglycerol nucleoside (PMGN) precursors. Comparative thermal stability experiments conducted on homo- and heteroduplexes made of (S)-ZNA are described that evince its high self-hybridization efficiency in contrast to poor binding of natural complements. Although preliminary and not conclusive, circular dichroism data and dynamic modeling computations provide support to a left-handed geometry of double-stranded (S)-ZNA. Nonetheless, PMGN diphosphate monomers were recognized as substrates by Escherichia coli (E. coli) polymerase I as well as being imported into E. coli cells equipped with an algal nucleotide transporter. A further investigation into the in vivo propagation of (S)-ZNA culminated with the demonstration of the first synthetic nucleic acid with an acyclic backbone that can be transliterated to DNA by the E. coli cellular machinery.


Assuntos
Escherichia coli/genética , Ácidos Nucleicos/química , Organofosfonatos/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética
2.
J Am Chem Soc ; 140(21): 6690-6699, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29722977

RESUMO

Although several synthetic or xenobiotic nucleic acids (XNAs) have been shown to be viable genetic materials in vitro, major hurdles remain for their in vivo applications, particularly orthogonality. The availability of XNAs that do not interact with natural nucleic acids and are not affected by natural DNA processing enzymes, as well as specialized XNA processing enzymes that do not interact with natural nucleic acids, is essential. Here, we report 3'-2' phosphonomethyl-threosyl nucleic acid (tPhoNA) as a novel XNA genetic material and a prime candidate for in vivo XNA applications. We established routes for the chemical synthesis of phosphonate nucleic acids and phosphorylated monomeric building blocks, and we demonstrated that DNA duplexes were destabilized upon replacement with tPhoNA. We engineered a novel tPhoNA synthetase enzyme and, with a previously reported XNA reverse transcriptase, demonstrated that tPhoNA is a viable genetic material (with an aggregate error rate of approximately 17 × 10-3 per base) compatible with the isolation of functional XNAs. In vivo experiments to test tPhoNA orthogonality showed that the E. coli cellular machinery had only very limited potential to access genetic information in tPhoNA. Our work is the first report of a synthetic genetic material modified in both sugar and phosphate backbone moieties and represents a significant advance in biorthogonality toward the introduction of XNA systems in vivo.


Assuntos
DNA/química , Organofosfonatos/química , Polímeros/metabolismo , Xenobióticos/metabolismo , DNA/metabolismo , Ligases/química , Ligases/metabolismo , Modelos Moleculares , Estrutura Molecular , Organofosfonatos/metabolismo , Polímeros/química , Engenharia de Proteínas , Xenobióticos/química
3.
Chemistry ; 24(48): 12695-12707, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29883012

RESUMO

The synthesis, base pairing properties and in vitro (polymerase) and in vivo (E. coli) recognition of 2'-deoxynucleotides with a 2-amino-6-methyl-8-oxo-7,8-dihydro-purine (X), a 2-methyl-6-thiopurine (Y) and a 6-methyl-4-pyrimidone (Z) base moiety are described. As demonstrated by Tm measurements, the X and Y bases fail to form a self-complementary base pair. Despite this failure, enzymatic incorporation experiments show that selected DNA polymerases recognize the X nucleotide and incorporate this modified nucleotide versus X in the template. In vivo, X is mainly recognized as a A/G or C base; Y is recognized as a G or C base and Z is mostly recognized as T or C. Replacing functional groups in nucleobases normally involved in W-C recognition (6-carbonyl and 2-amino group of purine; 6-carbonyl of pyrimidine) readily leads to orthogonality (absence of base pairing with natural bases).

4.
Biochim Biophys Acta ; 1840(1): 626-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140392

RESUMO

BACKGROUND: The development of enzyme-mediated glycosynthesis using glycoside hydrolases is still an inexact science, because the underlying molecular determinants of transglycosylation are not well understood. In the framework of this challenge, this study focused on the family GH51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus, with the aim to understand why the mutation of position 344 provokes a significant modification of the transglycosylation/hydrolysis partition. METHODS: Detailed kinetic analysis (kcat, KM, pKa determination and time-course NMR kinetics) and saturation transfer difference nuclear magnetic resonance spectroscopy was employed to determine the synthetic and hydrolytic ability modification induced by the redundant N344 mutation disclosed in libraries from directed evolution. RESULTS: The mutants N344P and N344Y displayed crippled hydrolytic abilities, and thus procured improved transglycosylation yields. This behavior was correlated with an increased pKa of the catalytic nucleophile (E298), the pKa of the acid/base catalyst remaining unaffected. Finally, mutations at position 344 provoked a pH-dependent product inhibition phenomenon, which is likely to be the result of a significant modification of the proton sharing network in the mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE: Using a combination of biochemical and biophysical methods, we have studied TxAbf-N344 mutants, thus revealing some fundamental details concerning pH modulation. Although these results concern a GH51 α-l-arabinofuranosidase, it is likely that the general lessons that can be drawn from them will be applicable to other glycoside hydrolases. Moreover, the effects of mutations at position 344 on the transglycosylation/hydrolysis partition provide clues as to how TxAbf can be further engineered to obtain an efficient transfuranosidase.


Assuntos
Arabinose/metabolismo , Bacillaceae/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação/genética , Bacillaceae/genética , Bacillaceae/metabolismo , Catálise , Domínio Catalítico , Cromatografia em Camada Fina , Glicosídeo Hidrolases/química , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
5.
Science ; 372(6541): 520-524, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926956

RESUMO

Bacteriophage genomes harbor the broadest chemical diversity of nucleobases across all life forms. Certain DNA viruses that infect hosts as diverse as cyanobacteria, proteobacteria, and actinobacteria exhibit wholesale substitution of aminoadenine for adenine, thereby forming three hydrogen bonds with thymine and violating Watson-Crick pairing rules. Aminoadenine-encoded DNA polymerases, homologous to the Klenow fragment of bacterial DNA polymerase I that includes 3'-exonuclease but lacks 5'-exonuclease, were found to preferentially select for aminoadenine instead of adenine in deoxynucleoside triphosphate incorporation templated by thymine. Polymerase genes occur in synteny with genes for a biosynthesis enzyme that produces aminoadenine deoxynucleotides in a wide array of Siphoviridae bacteriophages. Congruent phylogenetic clustering of the polymerases and biosynthesis enzymes suggests that aminoadenine has propagated in DNA alongside adenine since archaic stages of evolution.


Assuntos
2-Aminopurina/análogos & derivados , Replicação do DNA , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA/química , Polimerização , Siphoviridae/química , Siphoviridae/enzimologia , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Genoma Viral , Filogenia , Siphoviridae/genética , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
6.
Carbohydr Res ; 401: 64-72, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25464083

RESUMO

Random mutagenesis was performed on the α-l-arabinofuranosidase of Thermobacillus xylanilyticus in order to enhance its ability to perform transarabinofuranosylation using natural xylo-oligosaccharides as acceptors. To achieve this goal, a two-step, high-throughput digital imaging protocol involving a colorimetric substrate was used to screen a library of 30,000 mutants. In the first step this screen selected for hydrolytically-impaired mutants, and in the second step the screen identified mutants whose global activity was improved in the presence of a xylo-oligosaccharide mixture. Thereby, 199 mutants displaying lowered hydrolytic activity and modified properties were detected. In the presence of these xylo-oligosaccharides, most of the 199 (i.e., 70%) enzymes were less inhibited and some (18) mutants displayed an unambiguous alleviation of inhibition (<25% loss of activity). More precise monitoring of reactions catalyzed by the most promising mutants revealed a significant improvement of the synthesis yields of transglycosylation products (up to 18% compared to 9% for the parental enzyme) when xylobiose was present in the reaction. Genetic analysis of improved mutants revealed that many of the amino acid substitutions that correlate with the modified phenotype are located in the vicinity of the active site, particularly in subsite -1. Consequently, we hypothesize that these mutations modify the active site topology or the molecular interaction network of the l-arabinofuranoside donor substrate, thus impairing the hydrolysis and concomitantly favoring transglycosylation onto natural acceptors.


Assuntos
Arabinose/química , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Bacillales/enzimologia , Domínio Catalítico , Técnicas de Química Sintética , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Glicosilação , Modelos Moleculares , Mutagênese , Mutação , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Relação Estrutura-Atividade
7.
N Biotechnol ; 30(5): 536-44, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23628811

RESUMO

Directed evolution was applied to the α-l-arabinofuranosidase from Thermobacillus xylanilyticus to confer better transglycosylation ability, particularly for the synthesis of benzyl α-l-arabinofuranosyl-(1,2)-α-d-xylopyranoside, starting from p-nitrophenyl α-l-arabinofuranoside (donor) and benzyl α-d-xylopyranoside (acceptor). The aim was to obtain mutants displaying both lower hydrolytic and greater transglycosylation activities to favour the stable production of the target disaccharide. The implementation of a simple chromogenic screen ultimately provided three mutant enzymes whose properties correspond to those sought after. These all displayed lowered hydrolytic activity and conserved or slightly improved transfer activity, while one of them also displayed lowered secondary hydrolysis of the transglycosylation product. DNA sequence analysis of the mutants revealed between three and seven point mutations and biochemical analysis combined with STD-NMR experiments indicated that distinct molecular mechanisms were active among the three mutants.


Assuntos
Bacillales/enzimologia , Proteínas de Bactérias/química , Dissacarídeos/síntese química , Glicosídeo Hidrolases/química , Glicosiltransferases/química , Mutação Puntual , Bacillales/genética , Proteínas de Bactérias/genética , Dissacarídeos/química , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética
8.
FEBS J ; 279(19): 3598-3611, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22823427

RESUMO

This study is focused on the elucidation of the functional role of the mobile ß2α2 loop in the α-L-arabinofuranosidase from Thermobacillus xylanilyticus, and particularly on the roles of loop residues H98 and W99. Using site-directed mutagenesis, coupled to characterization methods including isothermal titration calorimetry (ITC) and saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, and molecular dynamics simulations, it has been possible to provide a molecular level view of interactions and the consequences of mutations. Binding of para-nitrophenyl α-L-arabinofuranoside (pNP-α-l-Araf) to the wild-type arabinofuranosidase was characterized by K(d) values (0.32 and 0.16 mm, from ITC and STD-NMR respectively) that highly resembled that of the arabinoxylo-oligosaccharide XA(3)XX (0.21 mm), and determination of the thermodynamic parameters of enzyme : pNP-α-L-Araf binding revealed that this process is driven by favourable entropy, which is linked to the movement of the ß2α2 loop. Loop closure relocates the solvent-exposed W99 into a buried location, allowing its involvement in substrate binding and in the formation of a functional active site. Similarly, the data underline the role of H98 in the 'dynamic' formation and definition of a catalytically operational active site, which may be a specific feature of a subset of GH51 arabinofuranosidases. Substitution of H98 and W99 by alanine or phenylalanine revealed that mutations affected K(M) and/or k(cat). Molecular dynamics performed on W99A implied that this mutation causes the loss of a hydrogen bond and leads to an alternative binding mode that is detrimental for catalysis. STD-NMR experiments revealed altered binding of the aglycon motif in the active site, combined with reduced STD intensities of the α-L-arabinofuranosyl moiety for W99 substitutions.


Assuntos
Bacillaceae/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Hidrogênio/metabolismo , Fenilalanina/metabolismo , Sequência de Aminoácidos , Bacillaceae/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Hidrogênio/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Fenilalanina/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA