Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(47): 29925-29936, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33177231

RESUMO

Object-based attention describes the brain's capacity to prioritize one set of stimuli while ignoring others. Human research suggests that the binding of diverse stimuli into one attended percept requires phase-locked oscillatory activity in the brain. Even insects display oscillatory brain activity during visual attention tasks, but it is unclear if neural oscillations in insects are selectively correlated to different features of attended objects. We addressed this question by recording local field potentials in the Drosophila central complex, a brain structure involved in visual navigation and decision making. We found that attention selectively increased the neural gain of visual features associated with attended objects and that attention could be redirected to unattended objects by activation of a reward circuit. Attention was associated with increased beta (20- to 30-Hz) oscillations that selectively locked onto temporal features of the attended visual objects. Our results suggest a conserved function for the beta frequency range in regulating selective attention to salient visual features.


Assuntos
Atenção/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Percepção Visual/fisiologia , Animais , Ritmo beta/fisiologia , Tomada de Decisões/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Estimulação Luminosa , Recompensa , Navegação Espacial/fisiologia , Realidade Virtual
2.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398087

RESUMO

Sleep is observed in most animals, which suggests it subserves a fundamental process associated with adaptive biological functions. However, the evidence to directly associate sleep with a specific function is lacking, in part because sleep is not a single process in many animals. In humans and other mammals, different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such an approach is not feasible in different animals such as insects. Here, we perform long-term multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further compare the same to induced sleep. Using machine learning, we uncover the existence of distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.

3.
Transl Vis Sci Technol ; 11(2): 5, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113130

RESUMO

PURPOSE: Multifocal pupillographic objective perimetry (mfPOP) is being developed as an alternative to subjective threshold perimetry for the management of visual and neurological disorders. Here, we evaluate, in normal subjects, differences in signal quality between the original mfPOP method of spatially sparse Continuous stimulus presentation and the new Clustered Volleys (CVs) method. We hypothesized that the CVs method would lead to increased signal-to-noise ratios (SNRs) over the original method due to the stabilization of gain within the pupillary system. METHODS: Data were collected from six separate studies where otherwise-identical pairs of mfPOP tests using either the original Continuous stimulus presentation method or the new CVs method were undertaken; 440 6-minute tests from 96 normal subjects of varying ages were included. Per-region SNRs were compared between the two methods. RESULTS: Mean SNRs for the CVs mfPOP variants were between 35% and 57% larger than the original Continuous mfPOP variants (P < 0.001 in five of six studies). Similarly, the goodness-of-fit measure (r2) demonstrated large and significant fold increases of between 2.3× and 3.4× over the original method (all P < 0.001). Significant improvements in SNRs were present in all of the 88 test regions (44/eye), ranging between 8.4% and 93.7%; mean SNRs were significantly larger in 98% of test subjects. CONCLUSIONS: The CVs mfPOP stimulus presentation method produced substantial increases in signal quality over the original method. This is likely due to the stabilization of pupillary gain during stimulus presentation. TRANSLATIONAL RELEVANCE: These improvements increase diagnostic accuracy and have enabled shorter, 80-second mfPOP tests to be developed.


Assuntos
Testes de Campo Visual , Campos Visuais , Técnicas de Diagnóstico Oftalmológico , Humanos , Pupila , Razão Sinal-Ruído , Testes de Campo Visual/métodos
4.
Curr Biol ; 31(3): 578-590.e6, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33238155

RESUMO

The dynamic nature of sleep in many animals suggests distinct stages that serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioral methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during spontaneous sleep and compared this to dFB-induced sleep. We found that spontaneous sleep typically transitions from an active "wake-like" stage to a less active stage. In contrast, optogenetic activation of the dFB promotes sustained wake-like levels of neural activity even though flies become unresponsive to mechanical stimuli. When we probed flies with salient visual stimuli, we found that the activity of visually responsive neurons in the central brain was blocked by transient dFB activation, confirming an acute disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a key sleep function by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity appears similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.


Assuntos
Drosophila melanogaster , Sono , Animais , Drosophila melanogaster/genética , Privação do Sono , Vigília
5.
Accid Anal Prev ; 100: 111-122, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28130981

RESUMO

The ability to detect changes is crucial for safe driving. Previous research has demonstrated that drivers often experience change blindness, which refers to failed or delayed change detection. The current study explored how susceptibility to change blindness varies as a function of the driving environment, type of object changed, and safety relevance of the change. Twenty-six fully-licenced drivers completed a driving-related change detection task. Changes occurred to seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside trees) across two environments (urban or rural). The contextual safety relevance of the change was systematically manipulated within each object category, ranging from high safety relevance (i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). When viewing rural scenes, compared with urban scenes, participants were significantly faster and more accurate at detecting changes, and were less susceptible to "looked-but-failed-to-see" errors. Interestingly, safety relevance of the change differentially affected performance in urban and rural environments. In urban scenes, participants were more efficient at detecting changes with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal to no effect on change detection. Finally, even after accounting for safety relevance, change blindness varied significantly between target types. Overall the results suggest that drivers are less susceptible to change blindness for objects that are likely to change or move (e.g., traffic lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. pedestrians).


Assuntos
Acidentes de Trânsito/prevenção & controle , Atenção/fisiologia , Condução de Veículo/psicologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , População Rural , Segurança , População Urbana , Adulto Jovem
6.
Nat Commun ; 8(1): 1815, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29180766

RESUMO

Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.


Assuntos
Encéfalo/fisiologia , Dípteros/fisiologia , Eletrofisiologia/métodos , Fases do Sono/fisiologia , Animais , Drosophila melanogaster/fisiologia , Feminino , Isoxazóis/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/fisiologia , Sono/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA