Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Environ Manage ; 297: 113355, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375225

RESUMO

Semi-arid agricultural soils have increasingly been subjected to urban sewage sludge (USS) applications due to accelerated soil depletion and shortages in manure supply. Research studies addressing USS reuse have mostly been conducted in cropping systems and focused on changes in topsoil properties of a given texture. Therefore, sludge-soil interactions could be largely influenced by the presence of plants, soil particle composition and depth. In this field study, two agricultural soils (sandy, S and sandy loam, SL) received simultaneously four annual USS applications of 40, 80, and 120 t ha-1 year-1 in absence of vegetation. Outcomes showed the increase of carbon and macronutrients in both soils proportionally to USS dose especially in the topsoil profile (0-20 cm). Subsoil (20-40 cm) was similarly influenced by sludge rates, showing comparable variations of fertility parameters though at significant lower levels. The depth-dependent improvement of soil fertility in both layers enhanced the microbiological properties accordingly, with significant variations in soil SL characterized by a higher clay content than soil S. Besides, positive correlations between increases in sludge dose, salinity, trace metals, and enzyme activities in both soils indicate that excessive sludge doses did not cause soil degradation or biotoxic effects under the described experimental conditions. In particular and despite high geoaccumulation indices of Ni in both soils and profiles, the global concentrations of Cu, Ni, Pb, and Zn were still below threshold levels for contaminated soils. In addition, the maintenance of pH values within neutral range and the increase of organic matter content with respect to control would have further reduced metal availability in amended soils. Therefore, we could closely investigate the effects of texture and depth on the intrinsic resilience of each soil to cope with repetitive USS applications.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Agricultura , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análise
2.
Arch Microbiol ; 202(10): 2607-2617, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32691102

RESUMO

Actinomycetales is an order of actinobacteria that have an important role in the decomposition of organic matter. Their abundance and distribution can reflect a good level of soil fertility as well as biological activity. In this research study, actinomycetal diversity in soil was investigated under various field treatments with biowastes. Initially, unvegetated agricultural soil plots of 4 m2 had been annually amended with increasing rates of municipal solid waste compost (MSWC at 40, 80 and 120 t ha-1 year-1) and farmyard manure (FM at 40 and 120 t ha-1 year-1) for eight consecutive years. Control consisted of unamended soil and all treatments were distributed in four randomized complete blocks. At the end of the experimental period, total DNA was extracted from fresh topsoil samples (0-20 cm) then nested PCR-DGGE sequencing method was applied to assess the long-term effect of treatments on the diversity of actinomycetes. Analytical outcomes revealed the presence of ten actinomycetal families with Streptomycetaceae, Pseudonocardiaceae and Nocardioidaceae being the most dominant regardless to changes in experimental conditions. Besides, the long-term accumulation of both biowastes in soil affected the diversity of actinomycetal communities in different ways including contribution, stimulation or inhibition. Interestingly, soil treated with MSWC at an equivalent rate of 40 t ha-1 year-1 was likely to provide optimal growth conditions for major identified genera because it showed the highest actinomycetal diversity as compared to the rest of the treatments.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Agricultura/métodos , Biodiversidade , Perfil Genético , Microbiologia do Solo , Esterco
3.
Environ Monit Assess ; 186(7): 4367-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676992

RESUMO

In Tunisia, reclaimed water is increasingly used for irrigation in order to mitigate water shortage. However, few studies have addressed the effect of such practice on the environment. Thus, we attempted in this paper to assess the impact of irrigation with reclaimed water on the nitrate content and salinity in the Nabeul shallow aquifer on the basis of satellite images and data from 53 sampled wells. Ordinary and indicator kriging were used to map the spatial variability of these groundwater chemical parameters and to locate the areas where water is suitable for drinking and irrigation. The results of this study have shown that reclaimed water is not an influential factor on groundwater contamination by nitrate and salinity. Cropping density is the main factor contributing to nitrate groundwater pollution, whereas salinity pollution is affected by a conjunction of factors such as seawater interaction and lithology. The predictive maps show that nitrate content in the groundwater ranges from 9.2 to 206 mg/L while the electric conductivity ranges from 2.2 to 8.5 dS/m. The high-nitrate concentration areas underlie sites with high annual crop density, whereas salinity decreases gradually moving away from the coastline. The probability maps reveal that almost the entire study area is unsuitable for drinking with regard to nitrate and salinity levels. Appropriate measures, such as the elaboration of codes of good agricultural practices and action programs, should be undertaken in order to prevent and/or remediate the contamination of the Nabeul shallow aquifer.


Assuntos
Irrigação Agrícola/métodos , Monitoramento Ambiental , Água Subterrânea/química , Nitratos/análise , Salinidade , Eliminação de Resíduos Líquidos/métodos , Análise Espacial , Tunísia , Poluentes Químicos da Água/análise
4.
Environ Technol ; : 1-14, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403904

RESUMO

Due to its important role in the formation of humic acids (HA), improving lignin degradation during composting has usually been considered a challenge. One practice that could stimulate the biodegradation of this recalcitrant molecule is inoculation with exogenous lignolytic fungal strains. Two composts (C1) and (C2) from piles (H1) and (H2) were evaluated. H1 was the control pile and H2 was inoculated at maturity with Trametes trogii, resulting in a 35% increase in lignin degradation rate compared to H1. The aim of this study was to show the main effects of this increase on the humification process in the co-composting of green waste, coffee grounds and olive mill wastewater sludge (OMWWs). Microstructure of HA1 and HA2 extracted from C1 and C2, respectively, was also investigated by scanning electron microscopy (SEM) and SEM coupled with energy-dispersive X-ray spectroscopy (X-EDS). The results showed that there were several similarities between the compost samples tested. These included the mineral content, the degree of polymerization (PD)> 1 and the compact and rigid surface of the extracted HA. However, C2 was characterized by a higher humic content (HC), degree of polymerization (PD), humification index (HI) and percentage of humic acids (PHA) than C1. Carbon-13 nuclear magnetic resonance (13C-NMR) and Fourier transmission-infrared spectroscopy (FTIR) analysis showed that aliphatic groups such as hydroxyls, alcohols and carboxyls were predominant in both composts. SEM analysis in conjunction with X-EDS analysis of HA2 showed a higher proportion of carbon and potassium (18 and 7.93%) than in HA1 (14 and 0.95%).

5.
Water Sci Technol ; 67(1): 131-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23128630

RESUMO

Groundwater is vulnerable to overdraft and depletion, especially in relatively dry regions where natural recharge rates are very low and groundwater is the main source of water. Artificial recharge of groundwater with treated wastewater has been widely adopted as a technique to replenish the overdraft aquifers. Indeed, in the USA, the technique has been practised for a long time. In 1981, a design procedure manual was developed for practitioners by the United States Environmental Protection Agency (USEPA). It was updated in 1984 and lastly in 2006. However, the design procedure has not been fully generalized for the different situations and has not been fully formalized in order to allow its automated implementation on calculation software (i.e. spreadsheet). Therefore, in this paper we formalized and generalized the USEPA design procedure to achieve an automated iterative method of calculation which can be easily implemented in a spreadsheet.


Assuntos
Água Subterrânea , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Estados Unidos , United States Environmental Protection Agency
6.
Water Sci Technol ; 67(4): 764-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23306253

RESUMO

The 'Cap Bon' peninsula in Tunisia suffers from intensive tourist activities, high demographic increase and industrial development. As groundwater had been for a long time the main water source, aquifers had been subject to a severe depletion and seawater intrusion. Despite the measures taken prohibiting new drillings and water carrying by the construction of a waterway linking the region to the north-west region of Tunisia, the problem of water shortage persists. Artificial recharge of groundwater with treated wastewater has been decided as a technique to replenish the region aquifers. A pilot plant was constructed in the early 1980s in Souhil Wadi (Nabeul) area. Many experiments have been carried out on this plant and have led to controversial opinions about its performance and its impact on groundwater contamination. This contribution concerns the application of the procedure that we developed from the generalization and the formalization of the United States Environmental Protection Agency (US EPA) methodology for the design of treated wastewater aquifer recharge basins. This upgrading procedure implemented in a spreadsheet, has been used to retrofit the Souhil Wadi facility in order to improve its performance. This method highlighted the importance of the safety factor to estimate wastewater infiltration rate from clean water permeability measurements. It has, also, demonstrated the discordance between the initial design parameters of Souhil Wadi facility and their current status as they have changed with time and the infiltration capacity of the basins has been affected by clogging. Indeed, it has been demonstrated that with the current state of clogging of the basins, the design infiltration rate limited by the most restrictive layer (6.1 cm/hr) corresponds to 22% of the surface infiltration rate reached after a drying period of 10 d, which means that we need more basins to absorb the daily loading rate. The design method leads to the construct ion of five basins of 961 m(2) (31 × 31 m) each, with one basin being flooded for 3 d with 27 cm of water daily and rested for 10 d. The current status is completely different as only four basins are constructed with 324 m(2) each. Many actions in the short, medium and long term have been advised in order to improve the system performance.


Assuntos
Conservação dos Recursos Naturais , Água Subterrânea , Gerenciamento de Resíduos , Abastecimento de Água , Algoritmos , Análise da Demanda Biológica de Oxigênio , Projetos Piloto , Estações do Ano , Tunísia , Estados Unidos , United States Environmental Protection Agency , Movimentos da Água
7.
Environ Sci Pollut Res Int ; 30(10): 26596-26612, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369449

RESUMO

Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.


Assuntos
COVID-19 , Poluentes do Solo , Humanos , Solo , Esgotos/microbiologia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Metais , Poluentes do Solo/análise , Antibacterianos/farmacologia
8.
J Sci Food Agric ; 90(6): 965-71, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20355136

RESUMO

BACKGROUND: Inappropriate utilisation of biosolids may adversely impact agrosystem productivity. Here, we address the response of wheat (Triticum durum) to different doses (0, 40, 100, 200 and 300 t ha(-1)) of either municipal solid waste (MSW) compost or sewage sludge in a greenhouse pot experiment. Plant growth, heavy metal uptake, and antioxidant activity were considered. RESULTS: Biomass production of treated plants was significantly enhanced at 40 t ha(-1) and 100 t ha(-1) of MSW compost (+48% and +78% relative to the control, respectively). At the same doses of sewage sludge, the increase was only 18%. Higher doses of both biosolids restricted significantly the plant growth, in concomitance with the significant accumulation of heavy metals (Ni2+, Pb2+, Cu2+ and Zn2+), especially in leaves. Leaf activities of antioxidant enzymes (ascorbate peroxidase, glutathione reductase, catalase and superoxide dismutase) were unchanged at 40 t ha(-1) MSW compost or sewage sludge, but were significantly stimulated at higher doses (200-300 t ha(-1)), together with higher leaf concentration of reduced glutathione. CONCLUSION: This preliminary study suggests that a MSW supply at moderate doses (100 t ha(-1)) could be highly beneficial for wheat productivity.


Assuntos
Agricultura/métodos , Antioxidantes/metabolismo , Biomassa , Metais Pesados/metabolismo , Eliminação de Resíduos , Esgotos , Triticum , Governo Local , Folhas de Planta/metabolismo , Solo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
9.
Waste Manag Res ; 28(9): 828-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20022900

RESUMO

Actinomycetes with the ability to degrade natural polysaccharides were isolated during a screening programme from soil, farmyard manure and municipal solid waste compost. One of the most potent isolates was identified as Streptomyces sp. MSWC1 using morphological and biochemical properties along with 16S rDNA partial sequence analysis. The highest enzyme production by Streptomyces was observed for the xylanase and chitinase activity on different carbon sources with an optimum of 12,100 IU ml(-1) and 110 IU ml(-1) at 3 days' culture on 1% of xylan and chitin, respectively. To meet the demand of industry, low-cost medium is required for the production of hydrolases by Streptomyces sp. Strain MSWC1 grown on manure, compost, and a natural carbon source was used to evaluate the re-utilisation of biological wastes for the production of value-added products. Despite the presence of a high amount of toxic heavy metals in the compost, Streptomyces produced interesting enzymes that have been biochemically characterized.


Assuntos
Hidrolases/biossíntese , Eliminação de Resíduos/métodos , Streptomyces/metabolismo , Sequência de Bases , Biodegradação Ambiental , Cidades , Dados de Sequência Molecular , Streptomyces/genética , Streptomyces/isolamento & purificação
10.
J Environ Qual ; 49(2): 460-471, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016418

RESUMO

The agricultural reuse of urban sewage sludge (USS) modifies soil properties depending on sludge quality, management, and pedo-environmental conditions. The aim of this microcosm study was to assess C mineralization and subsequent changes in soil properties after USS addition to two typical Mediterranean soils: sandy (Soil S) and sandy loam (Soil A) at equivalent field rates of 40 t ha-1 (USS-40) and 120 t ha-1 (USS-120). Outcomes proved the biodegradability of USS through immediate CO2 release inside incubation bottles in a dose-dependent manner. Accordingly, the highest rates of daily C emission were recorded with USS-120 (3.7 and 3.9 mg kg-1 d-1 for Soils S and A, respectively) after 84 d of incubation at 25 °C. The addition of USS also improved soil fertility by enhancing soil macronutrients, microbial proliferation, and protease activity. Protease showed significant correlation with N, total organic C, and heterotrophic bacteria, reflecting the biostimulation and bioaugmentation effects of sludge. Soil indices like C/N/P stoichiometry and metabolic quotient (qCO2 ) varied mostly with mineralization rates of C and P in both soils. Despite a significant increase of soil salinity and total heavy metal content (lead, nickel, zinc, and copper) with USS dose, wheat germination was not affected by these changes. Both experimental soils showed intrinsic (Soil A) and incubation-induced (Soil S) phytotoxicities that were alleviated by USS addition. This was likely due to the enhancement of biodegradation and/or retention of phytotoxicants originating from previous land uses. Urban sewage sludge amendments could have applications in soil remediation by reducing the negative effects of allelopathic and/or anthropogenic phytoinhibitors.


Assuntos
Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Solo , Carbono/análise , Biomarcadores Ambientais , Esgotos
11.
J Environ Qual ; 49(4): 973-986, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33016480

RESUMO

Urban sewage sludge (USS) is increasingly applied to agricultural soils, but mixed results have been reported because of variations in reuse conditions. Most field trials have been conducted in cropping systems, which conceal intrinsic soil responses to sludge amendments due to the rhizosphere effect and farming practices. Therefore, the current field study highlights long-term changes in bare soil properties in strict relationship with soil texture and USS dose. Two agricultural soils (loamy sand [LS] and sandy [S]) were amended annually with increasing sludge rates up to 120 t ha-1 yr-1 for 5 yr under unvegetated conditions. Outcomes showed a USS dose-dependent variation of all studied parameters in topsoil samples. Soil salinization was the most significant risk related to excessive USS doses. Total dissolved salts (TDS) in saturated paste extracts reached the highest concentrations of 37.2 and 43.1 g L-1 in S soil and LS soil, respectively, treated with 120 t USS ha-1 yr-1 . This was also reflected by electrical conductivity of the saturated paste extract (ECe ) exceeding 4,000 µS cm-1 in both treatments. As observed for TDS, fertility indicators and bioavailable metals varied with soil texture due to the greater retention capacity of LS soil owing to higher fine fraction content. Soil phytotoxicity was estimated by the seed germination index (GI) calculated for lettuce, alfalfa, oat, and durum wheat. The GI was species dependent, indicating different degrees of sensitivity or tolerance to increasing USS rates. Lettuce germination was significantly affected by changes in soil conditions showing negative correlations with ECe and soluble metals. In contrast, treatment with USS enhanced the GI of wheat, reflecting higher salinity tolerance and a positive effect of sludge on abiotic conditions that control germination in soil. Therefore, the choice of adapted plant species is the key factor for successful cropping trials in sludge-amended soils.


Assuntos
Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Solo , Agricultura , Lactuca , Esgotos
12.
J Environ Sci (China) ; 21(10): 1452-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20000002

RESUMO

The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.


Assuntos
Alismatales/metabolismo , Conservação dos Recursos Naturais/métodos , Solo/análise , Verduras/metabolismo
13.
Environ Sci Pollut Res Int ; 26(19): 19012-19024, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30039484

RESUMO

Humic acid has a controversial effect on the biological treatment processes. Here, we have investigated humic acid effects on the Anammox activity by studying the nitrogen removal efficiencies in batch and continuous conditions and analyzing the microbial community using Fluorescence in situ hybridization (FISH) technique. The results showed that the Anammox activity was affected by the presence of humic acid at a concentration higher than 70 mg/L. In fact, in the presence of humic acid concentration of 200 mg/L, the Anammox activity decreased to 57% in batch and under continuous condition, the ammonium removal efficiencies of the reactor decreased from 78 to 41%. This reduction of Anammox activity after humic acid addition was highlighted by FISH analysis which revealed a considerable reduction of the abundance of Anammox bacteria and the bacteria living in symbiosis with them. Furthermore, a total inhibition of Candidatus Brocadia fulgida was observed. However, humic acid has promoted heterotrophic denitrifying bacteria which became dominant in the reactor. In fact, the evolution of the organic matter in the reactor showed that the added humic acid was used as carbon source by heterotrophic bacteria which explained the shift of metabolism to the favor of heterotrophic denitrifying bacteria. Accordingly, humic acid should be controlled in the influent to avoid Anammox activity inhibition.


Assuntos
Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Substâncias Húmicas , Microbiota , Anaerobiose , Carbono/metabolismo , Desnitrificação , Processos Heterotróficos , Hibridização in Situ Fluorescente , Nitrogênio/metabolismo , Oxirredução
14.
Sci Total Environ ; 670: 644-653, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30909042

RESUMO

The objective of this research was to evaluate the nitrogen removal in a single stage rural wastewater treatment system. It was a modified subsurface vertical flow (SSVF) constructed wetland. The so-called Anaerobic Ammonium Oxidation(ANAMMOX) process is favored by imposing a saturated zone at the bottom of the basin. The nitrogen removal performances of this modified SSVF were compared to those of a conventional hybrid system where the well-known nitrification-denitrification process is performed. This study was carried out using three lab-scale pilots of constructed wetlands during four months: (1) a hybrid constructed wetlands with a reed-Phragmites australis SSVF bed in serial with a cattail-Typha angustofolia SSHF bed (SSVFp + SSHF). (2) A reed-Phragmites australis SSVF bed partially saturated at 40% of its depth (SSVFPS); (3) A cattail-Typha angustofolia SSVF bed partially saturated at 40% of its depth (SSVFTS). The results showed that the three configurations used in this study were efficient for most of the pollutants reduction. In fact, single-stage reactors have achieved similar chemical oxygen demand (COD) removal in comparison to the two-stage reactor independently of the macrophytes species. However, for Total Kjeldahl Nitrogen (TKN), a slightly higher nitrogen removal efficiency was recorded for (SSVF p + SSHF) with an average removal rate of 53% versus 48% and 51% for SSVF PS and SSVFTS respectively. These findings were highlighted with fluorescent in situ hybridization (FISH) analysis, which demonstrated the presence of major differences in the community composition and abundance of the bacteria involved with denitrification and nitrification in the three systems. In fact, SSVFP of the hybrid system was characterized by highest relative abundance of nitrifying bacteria (13% Nitrosomonas, 11% Nitrosospira, 14% Nitrospira and 10% Nitrobacter). While, the SSHF of hybrid system had larger number of denitrifying species than SSVF, with relative abundances of pseudomonas (3%), Paracoccus (9%), Zoogloea (6%), Thauera (4%), Thiobacillus (2%) and Aeromonas (1%). Interestingly, in the SSVFST (planted with Thypha angustofolia) where the relative abundance of nitrifying bacteria was very low (4% Nitrosomonas, 4% Nitrosospira, 4% Nitrospira and 1% Nitrobacter), we have detected the presence of ANAMMOX bacteria (3%). Accordingly SSVFST in the presence of Thypha angustofolia have favored the development of ANAMMOX activity in comparison to the other configurations.


Assuntos
Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Anaerobiose , Desnitrificação , Hibridização in Situ Fluorescente , Nitrificação , Typhaceae , Águas Residuárias/química
15.
Bioresour Technol ; 99(15): 6745-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18282702

RESUMO

The limits for loading soils with Tunisian urban compost for cultivating Medicago sativa were determined in a 6-month experiment in a greenhouse. Mature municipal solid waste compost (MSWC) from Tunis city was applied to clay and sandy soils from cultivated fields at rates equivalent to 40, 80, 120tha(-1). In the absence of MSWC, the shoot biomass (dry weight) cumulated over four cuts was 2-2.5 lower in sandy soil than in clay soil. It was 20-25% augmented upon MSWC addition in clay soil, independently of MSWC dose. The opposite trend was observed in sandy soil, the shoot yields being diminished by MSWC in a dose dependent manner. In MSWC-amended clay soil but not in sandy soil, Cd, Cu, Zn, and Pb concentrations in shoots remained below or close to the tolerated values according to EEC norms. The MSWC might be used as conditioner for clay soil, but not for sandy soil.


Assuntos
Silicatos de Alumínio , Medicago sativa/crescimento & desenvolvimento , Metais Pesados/toxicidade , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Dióxido de Silício , Solo , Argila , Solo/análise
16.
Bioresour Technol ; 99(15): 7160-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18308562

RESUMO

The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40tha(-1) of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4gl(-1) NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing. At each cutting, dry weight (DW), NPK nutrition, chlorophyll, leaf protein content, Rubisco (ribulose-bisphosphate carboxylase/oxygenase) capacity, and contents of potential toxic elements were determined. Results showed that compost supply increased significantly the biomass production of non salt-treated plants (+80%). This was associated with higher N and P uptake in both shoots (+61% and +80%, respectively) and roots (+48% and +25%, respectively), while lesser impact was observed for K+. In addition, chlorophyll and protein contents as well as Rubisco capacity were significantly improved by the organic amendment. MSW compost mitigated the deleterious effect of salt stress on the plant growth, partly due to improved chlorophyll and protein contents and Rubisco capacity (-15%, -27% and -14%, respectively, in combined treatment, against -45%, -84% and -25%, respectively, in salt-stressed plants without compost addition), which presumably favoured photosynthesis and alleviated salt affect on biomass production by 21%. In addition, plants grown on amended soil showed a general improvement in their heavy metals contents Cu2+, Pb2+, Cd2+, and Zn2+ (in combined treatment: 190%, 53%, 168% and 174% in shoots and 183%, 42%, 42% and 114% in roots, respectively) but remained lower than phytotoxic values. Taken together, these findings suggest that municipal waste compost may be safely applied to salt-affected soils without adverse effects on plant physiology.


Assuntos
Hordeum/fisiologia , Eliminação de Resíduos/métodos , Cloreto de Sódio/química , Solo , Biomassa , Clorofila/metabolismo , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Metais Pesados/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Cloreto de Sódio/metabolismo
17.
Environ Sci Pollut Res Int ; 25(4): 3608-3615, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29164461

RESUMO

Sewage sludge is increasingly used as an organic amendment to agricultural soils, especially to soils containing little organic matter. However, little is known on the impact of this biowaste on seasonal changes of nickel and cadmium toxicity in a sandy loam soil. Accordingly, the aim of this field-scale study was to evaluate the seasonal phytotoxicity according to Cd, Ni, and dehydrogenase variation in an agricultural soil during two successive annual amendments with increasing amounts of urban sludge (0, 40, 80, and 120 t ha-1 year-1). Sampling was carried out at the end of dry season (EDS) and at the end of wet season (EWS) during 2 years 2012/2013. Sludge application significantly increased the amount of organic matter and dehydrogenase activity in the soil. In order to explain the seasonal variation of Cd and Ni, pH and electrical conductivity were also monitored in this study. The increased rate of sewage sludge addition slightly reduced the pH but soil remained above neutrality. The electrical conductivity which reflects soil salinity was strongly correlated with Cd and Ni content that increased with sludge dose. Salinity and heavy metals were highest at EDS 2013. In addition, soil phytotoxicity testing was performed by the evaluation of lettuce seed germination for 120 h. Although heavy metal content did not generally exceed Tunisian thresholds (3 and 75 mg kg-1 for Cd and Ni, respectively), the seed germination index decreased with sewage sludge dose at all seasons. In general, we observed a significant effect of seasonal variation for all studied parameters. Sewage sludge reuse could be a feasible way to improve soil organic matter but toxicity risks consistently increased with time.


Assuntos
Cádmio/toxicidade , Lactuca/efeitos dos fármacos , Níquel/toxicidade , Esgotos/química , Poluentes do Solo/toxicidade , Solo/química , Cádmio/análise , Germinação/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Níquel/análise , Salinidade , Estações do Ano , Poluentes do Solo/análise , Tunísia
18.
Chemosphere ; 70(1): 135-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17686508

RESUMO

The residual ecotoxicity of long-term bioremediated soils concomitantly spiked with three PAHs at four levels (15, 75, 150, 300 mg Sigma 3 PAHs kg(-1) soil) was evaluated using physico-chemical analyses, solid-phase bioassays and soil microbial activities. The pot-scale bioremediation process consisted of weekly moderate waterings in the presence or absence of sewage sludge compost (SSC) under greenhouse conditions. After 15 months, anthracene and pyrene were almost completely degraded whereas benzo[a]pyrene was still persisting, most apparently in SSC-amended soil treatments. However, no apparent toxic effects of the residual PAHs could be detected. SSC application at 40 t ha(-1) was performed to valorize the biowaste and stimulate PAH biodegradation but caused soil salinization and pH reduction at the end of the bioremediation process. Consequently, SSC-amended soils were characterized by strong phytotoxicity to lettuce and had adverse effects on the ostracod Heterocypris incongruens. Despite the smaller number of culturable bacterial populations in SSC-amended soils, soil enzymatic activities were not affected by the organic amendment and residual PAHs; and the bioremediation efficiency was likely to be more limited by the bioavailability of PAHs rather than by the total number of PAH-degraders.


Assuntos
Agricultura , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bioensaio , Fenômenos Químicos , Físico-Química , Contagem de Colônia Microbiana , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/química
19.
Chemosphere ; 65(7): 1153-62, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16725180

RESUMO

The fate of spiked anthracene, pyrene and benzo[a]pyrene in soil with or without sewage sludge compost was assessed during a 6-month bioremediation process simulating landfarming. Bioassays and physico-chemical analyses were employed to monitor toxicity change in soil samples and elutriates through ten sampling campaigns. Pearson product-moment correlation coefficient was determined to measure the strength of relationship between bioassays and physico-chemical analyses. The PAH dissipation in soil was enhanced after the first water addition, and the remaining amounts at the end of the experiment were positively correlated to the number of benzene rings and the presence of sewage sludge compost. Toxicity of soil elutriates to Daphnia magna was evident at early stages, originating exclusively from sewage sludge compost amendment. The lettuce root elongation was continuously inhibited by elutriates for all the treatments including control soil, probably due to high salinity or to unaddressed leachable phytotoxic compounds that were present in the experimental soil. The newly developed direct solid-phase chronic toxicity test using ostracod (Heterocypris incongruens) succeeded in evaluating the soil-bound PAH toxicity, as PAHs could not be detected in elutriates.


Assuntos
Antracenos/toxicidade , Benzo(a)pireno/toxicidade , Pirenos/toxicidade , Esgotos , Poluentes do Solo/toxicidade , Animais , Antracenos/análise , Antracenos/metabolismo , Benzo(a)pireno/análise , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Crustáceos/efeitos dos fármacos , Crustáceos/crescimento & desenvolvimento , Daphnia/efeitos dos fármacos , Fertilizantes , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Metais Pesados/análise , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Pirenos/análise , Pirenos/metabolismo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
20.
Environ Technol ; 37(13): 1676-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26652186

RESUMO

Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.


Assuntos
Biofilmes , Reatores Biológicos , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Vinho , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Ácidos Graxos Voláteis , Vitis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA