RESUMO
Synthesis and SAR studies of novel triazolobenzazepinones as gamma secretase modulators (GSMs) are presented in this communication. Starting from our azepinone leads, optimization studies toward improving central lowering of Aß42 led to the discovery of novel benzo-fused azepinones. Several benzazepinones were profiled in vivo and found to lower brain Aß42 levels in Sprague Dawley rats and transgenic APP-YAC mice in a dose-dependent manner after a single oral dose. Compound 34 was further progressed into a pilot study in our cisterna-magna-ported rhesus monkey model, where we observed robust lowering of CSF Aß42 levels.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Descoberta de Drogas , Macaca mulatta , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-DawleyRESUMO
The triazolyl amide γ-secretase modulators are potent alternatives to the cinnamyl amides that have entered the clinic for the treatment of Alzheimer's disease. Herein we build on the lead benzoazepinones described in our prior communication with imidazomethoxyarene moiety alternatives that offer opportunities to fine tune physical properties as well as address hERG binding and PK. Both half-life and bioavailability were significantly improved, especially in dog, with robust brain Aß42 lowering maintained in both transgenic mouse and rat.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacocinética , Animais , Disponibilidade Biológica , Camundongos , Camundongos Transgênicos , RatosRESUMO
Alzheimer's disease is a major unmet medical need with pathology characterized by extracellular proteinaceous plaques comprised primarily of ß-amyloid. γ-Secretase is a critical enzyme in the cellular pathway responsible for the formation of a range of ß-amyloid peptides; one of which, Aß42, is believed to be responsible for the neuropathological features of the disease. Herein, we report 4,4 disubstituted piperidine γ-secretase inhibitors that were optimized for in vitro cellular potency and pharmacokinetic properties in vivo. Key agents were further characterized for their ability to lower cerebral Aß42 production in an APP-YAC mouse model. This structural series generally suffered from sub-optimal pharmacokinetics but hypothesis driven lead optimization enabled the discovery of γ-secretase inhibitors capable of lowering cerebral Aß42 production in mice.
Assuntos
Amidas/síntese química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/química , Piperidinas/química , Doença de Alzheimer/tratamento farmacológico , Amidas/farmacologia , Peptídeos beta-Amiloides/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Camundongos , Fragmentos de Peptídeos/biossínteseRESUMO
Synthesis, SAR, and evaluation of aryl triazoles as novel gamma secretase modulators (GSMs) are presented in this communication. Starting from the literature and in-house leads, we evaluated a range of five-membered heterocycles as replacements for olefins commonly found in non-acid GSMs. 1,2,3-C-aryl-triazoles were identified as suitable replacements which exhibited good modulation of γ-secretase activity, excellent pharmacokinetics and good central lowering of Aß42 in Sprague-Dawley rats.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Triazóis/síntese química , Triazóis/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triazóis/metabolismoRESUMO
To assess the safety and tolerability of NVS32b, a monoclonal, afucosylated, anti-CD32b (FCGR2B) antibody, we used a humanized transgenic (Tg) mouse model that expresses all human Fc gamma receptors (FCGRs) while lacking all mouse FCGRs. Prior to its use, we extensively characterized the model. We found expression of all human FCGRs in a pattern similar to humans with some exceptions, such as low CD32 expression on T cells (detected with the pan CD32 antibody but more notably with the CD32b-specific antibody), variation in the transgene copy number, integration of additional human genes, and overall higher expression of all FCGRs on myeloid cells compared to human. Unexpectedly, NVS32b induced severe acute generalized thrombosis in huFCGR mice upon iv dosing. Mechanistic evaluation on huFCGR and human platelets revealed distinct binding, activation, and aggregation driven by NVS32b in both species. In huFCGR mice, the anti-CD32b antibody NVS32b binds platelet CD32a via both Fc and/or complementarity determining region (CDR) causing their activation while in human, NVS32b binding requires platelet preactivation and interaction of platelet CD32a via the Fc portion and an unknown platelet epitope via the CDR portion of NVS32b. We deemed the huFCGR mice to be overpredictive of the NVS32b-associated human thrombotic risk.
Assuntos
Receptores de IgG , Trombose , Animais , Anticorpos Monoclonais/toxicidade , Plaquetas , Humanos , Camundongos , Camundongos Transgênicos , Receptores de IgG/genética , Receptores de IgG/metabolismoRESUMO
Three novel conjugation metabolites of colchicine were identified in rat bile facilitated by enhanced on-line liquid chromatography-accurate radioisotope counting. The known 2- and 3-demethylcolchicines (DMCs) underwent O-sulfate conjugation in addition to the previously described O-glucuronidation. 2-DMC was preferably O-glucuronidated, whereas 3-DMC predominantly yielded O-sulfation conjugates, indicating phase II conjugation regiopreferences. Moreover, M1 was identified as a novel glutathione conjugate and a possible biotransformation pathway for its formation was proposed. The known 2-DMC (M6), 3-DMC (M7), 2-DMC glucuronide (M4), and novel 3-DMC sulfate (M3) were confirmed as the major metabolites. Radiometric data were acquired by the XFlow liquid chromatography-accurate radioisotope counting (XFlow LC-ARC) system, a novel technology for dynamic control of both on-column and postcolumn high-performance liquid chromatography flow rates to maximize sensitivity and resolution of radiochromatograms. A comparative evaluation was also performed between the XFlow LC-ARC system and a conventional flow radiometric detection system using bile samples from an in vivo disposition study of colchicine in male Sprague-Dawley rats. Results demonstrated a 20-fold sensitivity improvement of the XFlow LC-ARC system in comparison with radioactivity detection by conventional flow scintillation analyzers. The dynamic flow mode also provided the best chromatographic resolution. Unambiguous metabolite identification was performed by high-resolution mass spectrometry and nuclear magnetic resonance analysis.
Assuntos
Bile/química , Bile/metabolismo , Química Farmacêutica/métodos , Colchicina/análise , Colchicina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Colchicina/química , Espectroscopia de Ressonância Magnética/métodos , Masculino , Radiometria/métodos , Ratos , Ratos Sprague-DawleyRESUMO
A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.
Assuntos
Astrócitos/citologia , Barreira Hematoencefálica/fisiologia , Células Cultivadas/citologia , Células Endoteliais/citologia , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Barreira Hematoencefálica/efeitos dos fármacos , Separação Celular/instrumentação , Separação Celular/métodos , Células Cultivadas/fisiologia , Células Cultivadas/ultraestrutura , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Impedância Elétrica , Células Endoteliais/fisiologia , Células Endoteliais/ultraestrutura , Técnica Direta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/metabolismo , Inulina/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Reprodutibilidade dos Testes , Sus scrofaRESUMO
Heat shock was imposed on an in vitro model of the blood-brain barrier (BBB) by submersion into prewarmed growth medium. Transendothelial electrical resistance (TEER) was used to assess the functional integrity of the endothelial barrier. Consequences of the heat shock were highly dependent upon the temperature and duration of exposure. Temperatures below 47 degrees C required more than 30 s of exposure to significantly impair barrier function, but full recovery occurred within 1 h. When the temperature was 50-54 degrees C, an exposure of only 10 s significantly diminished barrier function. Ten seconds of 51 degrees C or 54 degrees C caused a significant loss of barrier function (45% and 80%, respectively). Full recovery from the 51 degrees C shock occurred within 5 min, while recovery from the 54 degrees C shock required more than 10 h. When the temperature was 57 degrees C or greater, a 3-s duration diminished barrier function by 80%. In response to heat shock, the brain microvascular endothelial cells developed thermotolerance and over-compensated in their ability to form a physiological barrier. The BBB models lost more than 60% of barrier function when initially exposed to 53 degrees C for 5 s but lost only 30% of function when exposed to the same treatment 24 h later. The BBB models over-compensated to produce a reinforced barrier with double the original TEER following repeated application of heat treatment (57 degrees C for 3 s). In vivo experiments will require exquisite manipulation of the temperature and duration in order to achieve the desired opening of the BBB in therapeutic applications.