Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(9): 2941-4, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26901659

RESUMO

Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites.

2.
Nano Lett ; 15(12): 7987-93, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26488847

RESUMO

Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump-probe transient absorption and pump-push-photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG.

3.
Adv Mater ; 28(18): 3528-34, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990965

RESUMO

The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.

4.
Nat Commun ; 6: 8420, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404048

RESUMO

Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼ 1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a 'phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.

5.
Nat Commun ; 6: 8259, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26411283

RESUMO

Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

6.
J Phys Chem Lett ; 6(17): 3510-4, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-27120686

RESUMO

The performance of quantum dots (QDs) in optoelectronic devices suffers as a result of sub-bandgap states induced by the large fraction of atoms on the surface of QDs. Recent progress in passivating these surface states with thiol ligands and halide ions has led to competitive efficiencies. Here, we apply a hybrid ligand mixture to passivate PbSe QD sub-bandgap tail states via a low-temperature, solid-state ligand exchange. We show that this ligand mixture allows tuning of the energy levels and the physical QD size in the solid state during film formation. We hereby present a novel, postsynthetic path to tune the properties of QD films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA