Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Ind Microbiol Biotechnol ; 44(3): 329-338, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032229

RESUMO

This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) ß-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while ß-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.


Assuntos
Basidiomycota/metabolismo , Ácidos Carboxílicos/química , Lactonas/química , Espécies Reativas de Oxigênio/metabolismo , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Ferro/química , Lignina/metabolismo
2.
Appl Environ Microbiol ; 82(22): 6557-6572, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590806

RESUMO

Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the ß-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE: Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/metabolismo , Glucanos/metabolismo , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Basidiomycota/genética , Parede Celular/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Cromatografia por Troca Iônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Espectrometria de Massas , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Pichia/genética , Viscosidade , Madeira/metabolismo , Madeira/microbiologia
3.
Arch Microbiol ; 196(8): 565-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859913

RESUMO

This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.


Assuntos
Basidiomycota/metabolismo , Materiais de Construção/microbiologia , Madeira/microbiologia , Transporte Biológico , Cálcio/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ácido Oxálico/metabolismo , Madeira/química
4.
Am J Bot ; 100(9): 1751-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24018857

RESUMO

PREMISE OF THE STUDY: Coniferous bordered pits are some of the most unique and fascinating microstructures of the lignified cell wall. The pit membrane consists of a margo and a torus region, hence facilitating both xylary water transport and also limiting air intrusion by pit aspiration. Additionally, bordered pits have been reported to play a decisive role in the control of rapid liquid flow via the shrinkage and swelling of pectin. The study of the nanostructural chemical composition of pit membranes has been difficult with common imaging/chemical techniques, which involve drying and/or coating of the samples. • METHODS: Using fluorescent tagging and antibodies specific to pectin, and a His-tagged cellulose-binding module that reacts with crystalline cellulose, in combination with confocal laser scanning microscopy (CLSM) and 4Pi microscopy, we generated three-dimensional images of intact pit membranes. • KEY RESULTS: With enhanced resolution in the z-direction of the 4Pi microscope, it was possible to distinguish cellulose in the torus and the margo strands of Pinus strobus. The torus was surrounded by pectin, and a pectin ring was found at the margin of the torus. We also found differences in the structure of the pit membrane between aspirated and unaspirated pits, with a displacement of pectin to form a ring-like structure, the collapse of a void in the interior of the torus, and an apparent change in the chemical structure of cellulosic components, during the aspiration process. • CONCLUSIONS: The 4Pi microscope is well suited to scanning pit membranes to discover previously undescribed anatomical features in bordered pits and can provide information on chemical composition when used in combination with appropriate probes.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Confocal/métodos , Pinus/ultraestrutura , Água/metabolismo , Anticorpos , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Pinus/química , Pinus/metabolismo , Coloração e Rotulagem/métodos , Madeira/química , Madeira/metabolismo , Madeira/ultraestrutura , Xilema/química , Xilema/metabolismo , Xilema/ultraestrutura
5.
Appl Microbiol Biotechnol ; 94(2): 323-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22391968

RESUMO

This work reviews the brown-rot fungal biochemical mechanism involved in the biodegradation of lignified plant cell walls. This mechanism has been acquired as an apparent alternative to the energetically expensive apparatus of lignocellulose breakdown employed by white-rot fungi. The mechanism relies, at least in the incipient stage of decay, on the oxidative cleavage of glycosidic bonds in cellulose and hemicellulose and the oxidative modification and arrangement of lignin upon attack by highly destructive oxygen reactive species such as the hydroxyl radical generated non-enzymatically via Fenton chemistry [Formula: see text]. Modifications in the lignocellulose macrocomponents associated with this non-enzymatic attack are believed to aid in the selective, near-complete removal of polysaccharides by an incomplete cellulase suite and without causing substantial lignin removal. Utilization of this process could provide the key to making the production of biofuel and renewable chemicals from lignocellulose biomass more cost-effective and energy efficient. This review highlights the unique features of the brown-rot fungal non-enzymatic, mediated Fenton reaction mechanism, the modifications to the major plant cell wall macrocomponents, and the implications and opportunities for biomass processing for biofuels and chemicals.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Biomassa , Biotransformação , Oxirredução
6.
Front Plant Sci ; 13: 921961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909746

RESUMO

Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.

7.
Front Microbiol ; 11: 1389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670241

RESUMO

Brown rot (BR) decay mechanisms employ carbohydrate-active enzymes (CAZymes) as well as a unique non-enzymatic chelator-mediated Fenton (CMF) chemistry to deconstruct lignocellulosic materials. Unlike white rot fungi, BR fungi lack peroxidases for lignin deconstruction, and also lack some endoglucanase/cellobiohydrolase activities. The role that the CMF mechanism plays in "opening up" the wood cell wall structure in advance of enzymatic action, and any interaction between CMF constituents and the selective CAZyme suite that BRs possess, is still unclear. Expression patterns for CMF redox metabolites and lytic polysaccharide monooxygenase (LPMO-AA9 family) genes showed that some LPMO isozymes were upregulated with genes associated with CMF at early stages of brown rot by Gloeophyllum trabeum. In the structural studies, wood decayed by the G. trabeum was compared to CMF-treated wood, or CMF-treated wood followed by treatment with either the early-upregulated LPMO or a commercial CAZyme cocktail. Structural modification of decayed/treated wood was characterized using small angle neutron scattering. CMF treatment produced neutron scattering patterns similar to that of the BR decay indicating that both systems enlarged the nanopore structure of wood cell walls to permit enzyme access. Enzymatic deconstruction of cellulose or lignin in raw wood samples was not achieved via CAZyme cocktail or LPMO enzyme action alone. CMF treatment resulted in depolymerization of crystalline cellulose as attack progressed from the outer regions of individual crystallites. Multiple pulses of CMF treatment on raw wood showed a progressive increase in the spacing between the cellulose elementary fibrils (EFs), indicating the CMF eroded the matrix outside the EF bundles, leading to less tightly packed EFs. Peracetic acid delignification treatment enhanced subsequent CMF treatment effects, and allowed both enzyme systems to further increase spacing of the EFs. Moreover, even after a single pulse of CMF treatment, both enzymes were apparently able to penetrate the cell wall to further increase EF spacing. The data suggest the potential for the early-upregulated LPMO enzyme to work in association with CMF chemistry, suggesting that G. trabeum may have adopted mechanisms to integrate non-enzymatic and enzymatic chemistries together during early stages of brown rot decay.

8.
J Biol Inorg Chem ; 14(8): 1253-63, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19621248

RESUMO

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.


Assuntos
Temperatura Alta , Espectrometria de Massas/métodos , Picea , Compostos de Amônio Quaternário/química , Madeira , Biomimética , Fungos/metabolismo , Lignina/química , Lignina/metabolismo , Estrutura Molecular , Análise Multivariada , Oxirredução , Picea/química , Picea/metabolismo , Análise de Componente Principal , Madeira/química , Madeira/metabolismo
9.
J Nanosci Nanotechnol ; 8(5): 2472-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572666

RESUMO

Carbon nanotubes (CNTs) were produced from wood fiber using a low temperature process, which included continuous oxidization at 240 degrees C and cyclic oxidation at 400 degrees C. The inside diameter of the CNTs was approximately 4-5 nm and the outside diameter ranged from 10 nm to 20 nm. No CNTs were produced when pure lignin and cellulose were tested indicating that the molecular and spatial arrangement of cell wall plays an important role in CNT formation. The research suggests that the chemical components in the secondary plant cell wall and their differential ablation properties are critical for the formation of CNTs at these comparatively low temperatures.

10.
Sci Rep ; 7: 41798, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139778

RESUMO

The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell walls and fungal hyphae during decay is not known. Here we employ synchrotron-based X-ray fluorescence microscopy (XFM) to map and quantify physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn, in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood, fungal hyphae with the dried extracellular matrix (ECM) from the fungus, and Ca oxalate crystals. Three-dimensional ion volume reconstructions were also acquired of wood cell walls and hyphae with ECM. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cell wall length scales. These measurements provide new insights into the movement of ions during decay and illustrate how synchrotron-based XFM is uniquely suited study these ions.


Assuntos
Fungos/metabolismo , Íons/metabolismo , Lignina/metabolismo , Microscopia de Fluorescência , Síncrotrons , Raios X , Madeira/química , Madeira/microbiologia
11.
Biotechnol Biofuels ; 10: 179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702084

RESUMO

Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a "pretreatment" used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability.

12.
Curr Opin Chem Biol ; 29: 108-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583519

RESUMO

Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.


Assuntos
Biocatálise , Lignina/metabolismo , Sequência de Aminoácidos , Animais , Archaea/química , Archaea/enzimologia , Archaea/metabolismo , Bactérias/química , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/química , Fungos/enzimologia , Fungos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polimerização , Alinhamento de Sequência
13.
FEMS Microbiol Lett ; 209(1): 107-11, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-12007662

RESUMO

Near infrared (NIR) spectroscopy and pyrolysis-molecular beam mass spectrometry (py-MBMS) analysis can be used in conjunction with multivariate regression and principal components analysis to differentiate brown-rot-degraded wood from non-degraded spruce and to follow the temporal changes in wood undergoing brown-rot degradation. Regression of NIR test results vs. percent weight loss for Postia placenta- and Gloeophyllum trabeum-infected spruce wood blocks yielded a correlation coefficient of 0.96. Regression of MBMS test results for the same samples yielded a correlation coefficient of 0.96. Principle components analysis was used to differentiate non-infected wood and P. placenta- and G. trabeum-infected wood. These techniques may be used to detect different types of biodegradation and to develop a better understanding of the chemical changes that the wood undergoes when it is subjected to brown-rot biodegradation.


Assuntos
Espectrometria de Massas , Polyporaceae/metabolismo , Polyporales/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Madeira , Biodegradação Ambiental , Espectrometria de Massas/métodos , Análise Multivariada
14.
Water Environ Res ; 76(7): 2703-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16042119

RESUMO

A mediated Fenton system has been evaluated for decolorization of several types of dyes. The result shows that the Fenton system with a dihydroxybenzoic acid (DHBA) chelator-mediator effectively reduced the color of a diluted solution of Carta Yellow RW liquid, Carta Yellow G liquid, and Cartasol Red 2GF liquid dye to a colorless level after 90 minutes of treatment with 100 microM iron II (Fe[II]), 100 microM DHBA, and 10 mM hydrogen peroxide (H2O2) at room temperature. Our results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical (OH) species to increase the decolorization efficiency. Our results suggest that application of this system would also result in an increase in dissolved oxygen (DO) in solution, which in turn would result in reduction of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC).


Assuntos
Cor , Corantes/química , Peróxido de Hidrogênio/química , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Catecóis/química , Hidroxibenzoatos , Radical Hidroxila/química , Oxigênio/análise , Espectrofotometria
15.
J Biotechnol ; 192 Pt A: 71-7, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25449108

RESUMO

The decarboxylation reaction of protocatechuate has been described as a bottleneck and a rate-limiting step in cis,cis-muconate (ccMA) bioproduction from renewable feedstocks such as sugar. Because sugars are already in high demand in the development of many bio-based products, our work focuses on improving protocatechuate decarboxylase (Pdc) activity and ccMA production in particular, from lignin-related aromatic compounds. We previously had transformed an Escherichia coli strain using aroY, which had been used as a protocatechuate decarboxylase encoding gene from Klebsiella pneumoniae subsp. pneumoniae A170-40, and inserted other required genes from Pseudomonas putida KT2440, to allow the production of ccMA from vanillin. This recombinant strain produced ccMA from vanillin, however the Pdc reaction step remained a bottleneck during incubation. In the current study, we identify a way to increase protocatechuate decarboxylase activity in E. coli through enzyme production involving both aroY and kpdB; the latter which encodes for the B subunit of 4-hydroxybenzoate decarboxylase. This permits expression of Pdc activity at a level approximately 14-fold greater than the strain with aroY only. The expression level of AroY increased, apparently as a function of the co-expression of AroY and KpdB. Our results also imply that ccMA may inhibit vanillate demethylation, a reaction step that is rate limiting for efficient ccMA production from lignin-related aromatic compounds, so even though ccMA production may be enhanced, other challenges to overcome vanilate demethylation inhibition still remain.


Assuntos
Proteínas de Bactérias/metabolismo , Benzaldeídos/metabolismo , Carboxiliases/metabolismo , Escherichia coli/enzimologia , Hidroxibenzoatos/metabolismo , Ácido Sórbico/análogos & derivados , Proteínas de Bactérias/genética , Carboxiliases/genética , Escherichia coli/genética , Genes Bacterianos/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Lignina , Plasmídeos , Pseudomonas putida/genética , Proteínas Recombinantes/metabolismo , Ácido Sórbico/metabolismo
16.
Fungal Biol ; 116(10): 1052-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23063184

RESUMO

Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Madeira/microbiologia , Hidrólise , Espectroscopia de Ressonância Magnética , Madeira/química , Difração de Raios X
17.
Bioresour Technol ; 100(5): 1797-802, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19027291

RESUMO

In this study the oxidative behavior of carbons derived from cellulose and lignin were compared using thermogravimetric analysis (TGA). Specific surface area and chemical composition of the two types of carbon were analyzed using nitrogen adsorption at 77K and infrared spectroscopy respectively. The results demonstrate that cellulose carbon has a higher reaction order and lower activation energy than lignin carbon under identical experimental conditions when they were prepared at temperatures lower than 500 degrees C. However, such differences were considerably reduced for the carbon samples prepared at temperatures greater than 700 degrees C. It was verified that lignin carbon is more stable than cellulose carbon due to its higher content of aromatic structures when they are prepared at lower temperature. The specific surface area and porosity have a more limited contribution to the differential oxidative behaviors of the two types of carbon. This research has significance related to the formation of carbon nanotubes from plant materials during low temperature carbonization.


Assuntos
Carbono/química , Celulose/química , Lignina/química , Carbono/análise , Nanotecnologia/métodos , Oxirredução , Espectrofotometria Infravermelho , Temperatura , Termogravimetria
18.
Appl Environ Microbiol ; 72(8): 5662-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16885326

RESUMO

Brown rot fungi were incubated in agar and agar-wood microcosms containing metallic or hydroxide forms of Al, Cu, and Fe. Metal dissolution was associated with elevated oxalate concentrations in agar, but metals translocated into wood did not affect oxalate accumulation, crystal production, or decay rate, demonstrating a substrate-dependent oxalate dynamic.


Assuntos
Betula/microbiologia , Metais/metabolismo , Oxalatos/metabolismo , Picea/microbiologia , Polyporales/metabolismo , Madeira , Ágar , Betula/metabolismo , Biodegradação Ambiental , Meios de Cultura , Ecossistema , Picea/metabolismo
19.
Environ Sci Technol ; 39(1): 175-80, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15667092

RESUMO

The electrochemical behavior of 2,3-dihydroxybenzoic acid (2,3-DHBA) and the electron-transfer characteristics between Cu(II) and 2,3-DHBA were studied in aqueous solutions using cyclic voltammetry (CV). The overall electrochemical oxidation process of 2,3-DHBA by Cu(II) may be classified as a chemical reaction involving one-electron oxidation of 2,3-DHBA to its semiquinone radical in solution, followed by an electron-transfer reaction involving the oxidation of the semiquinone radical to a quinone at the electrode surface. In the presence of H2O2, oxidation of 2,3-DHBA by Cu(II) is enhanced due to the regeneration of Cu(II) by H2O2 oxidizing Cu(I). The redox cycling between Cu(I)/Cu(II) and H2O2 also produces hydroxyl radicals (OH). Even though the presence of OH may not be detected at the surface of a glassy carbon electrode, production of electroactive dissolved oxygen (O2) suggests the presence of OH. The production of O2 is dependent on Cu(II):H2O2 concentration ratio. At the electrode surface and when the initial Cu(II):H2O2 is less than 1, O2 is produced, suggesting that H2O2 may act as a scavenger for OH; at initial Cu(II):H2O2 > 1, the production of O2 is not favored, and OH will be involved in the oxidation of Cu(I) and the organic ligand. The reaction mechanisms proposed in this study indicate that OH production by chelator-mediated Fenton reactions is favorable under conditions found in the wood cell wall.


Assuntos
Cobre/química , Hidroxibenzoatos/química , Quelantes de Ferro/química , Biodegradação Ambiental , Eletroquímica , Fungos , Peróxido de Hidrogênio/química , Oxidantes/química , Oxirredução , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA