Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem Lett ; 24(4): 1085-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486132

RESUMO

The structure-human CXCR3 binding affinity relationship of a series of pyridyl/pyrazinyl-piperazinyl-piperidine derivatives were explored with a focus to improve PK, hERG and metabolic profiles. Several small heterocycles were identified as amide surrogates, which minimized many potential metabolite issues. During the course of SAR development, we have observed the additive effect of desirable functional groups to improve hERG and PK profiles which lead to the discovery of many clinically developable CXCR3 antagonists with excellent overall profile.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/metabolismo , Compostos Heterocíclicos/farmacologia , Receptores CXCR3/antagonistas & inibidores , Amidas/administração & dosagem , Amidas/química , Animais , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
2.
BMC Immunol ; 13: 2, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22233170

RESUMO

BACKGROUND: The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. RESULTS: In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. CONCLUSIONS: SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to prevent transplant rejection.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Quimiotaxia de Leucócito/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração , Piperazinas/farmacologia , Pirazinamida/análogos & derivados , Receptores CXCR3/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Rejeição de Enxerto/imunologia , Humanos , Técnicas In Vitro , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Ligação Proteica , Pirazinamida/farmacologia , Ensaio Radioligante , Ratos , Linfócitos T/imunologia
3.
Ann Allergy Asthma Immunol ; 107(2): 145-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21802023

RESUMO

BACKGROUND: Asthma is a chronic airway inflammatory disease that is associated with a large influx of inflammatory cells. Several chemokines and chemokine receptors play critical roles in the development of allergic airway inflammation. OBJECTIVE: Because polarized human T(H)2 cells express a functional CXCR3 chemokine receptor, we evaluated the effects of a selective CXCR3 inhibitor in a mouse model of allergic airway disease. METHODS: Ovalbumin-specific CD8(+) T effector cells were generated from OT-1 mice in the presence of interleukin 2. The activity of a CXCR3 inhibitor was examined in vitro by monitoring Ca(2+) influx after receptor ligation. In vivo, the activity was assessed in sensitized and challenged mice by monitoring airway function, inflammatory parameters, including cellular infiltrates and cytokines in the bronchoalveolar lavage fluid. RESULTS: Approximately 40% of CD8(+) T effector cells expressed the CXCR3 receptor. In vitro, CXCR3 antagonism reduced Ca(2+) influx after receptor engagement. In contrast, the CXCR3 antagonist had little to no effect on airway function or inflammatory parameters despite adequate exposure levels. CONCLUSIONS: CXCR3 antagonism did not prevent allergen-induced airway hyperresponsiveness or airway inflammation in a mouse allergy model despite having activity in in vitro functional assays.


Assuntos
Imunoterapia , Pneumonia/tratamento farmacológico , Pneumonia/fisiopatologia , Receptores CXCR3/antagonistas & inibidores , Células Th2/metabolismo , Animais , Asma/tratamento farmacológico , Asma/imunologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Terapia de Alvo Molecular , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Testes de Função Respiratória , Células Th2/imunologia
4.
Bioorg Med Chem Lett ; 21(5): 1527-31, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21277198

RESUMO

The structure-human CXCR3 binding affinity relationship of a series of pyridyl-piperazinyl-piperidine derivatives was explored. The optimization campaign highlighted the pronounced effect of 2'-piperazine substitution on CXCR3 receptor affinity. Analog 18j, harboring a 2'(S)-ethylpiperazine moiety, exhibited a human CXCR3 IC(50) of 0.2 nM.


Assuntos
Piperazinas/síntese química , Piperidinas/síntese química , Piridinas/síntese química , Receptores CXCR3/agonistas , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Piperazina , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 21(23): 6982-6, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22018463

RESUMO

The SAR of a novel pyrazinyl-piperazinyl-piperidine scaffold with CXCR3 receptor antagonist activity was explored. Optimization of the DMPK profile and reduction of hERG inhibition is described. Compound 16e with single-digit CXCR3 affinity, good rat PK and hERG profiles has been identified as a lead for further study.


Assuntos
Piperazinas/química , Pirazinas/química , Receptores CXCR3/antagonistas & inibidores , Animais , Concentração Inibidora 50 , Estrutura Molecular , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Pirazinas/farmacologia , Ratos , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 19(17): 5205-8, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19647429

RESUMO

High-throughput screening of an encoded combinatorial aryl piperazine library led to the identification of a novel series of potent piperazinyl-piperidine based CXCR3 antagonists. Analogs of the initial hit were synthesized via solid and solution phase methods to probe the influence of structure on the CXCR3 binding of these molecules. Various functional groups were found to contribute to the overall potency and essential molecular features were identified.


Assuntos
Anti-Inflamatórios/química , Piperazinas/química , Piperidinas/química , Receptores CXCR3/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Técnicas de Química Combinatória , Humanos , Piperazinas/síntese química , Piperazinas/farmacologia , Piperidinas/síntese química , Piperidinas/farmacologia , Receptores CXCR3/metabolismo , Relação Estrutura-Atividade
7.
J Inflamm (Lond) ; 8: 8, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21410952

RESUMO

BACKGROUND: Obesity and inflammation are highly integrated processes in the pathogenesis of insulin resistance, diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Molecular mechanisms underlying inflammatory events during high fat diet-induced obesity are poorly defined in mouse models of obesity. This work investigated gene activation signals integral to the temporal development of obesity. METHODS: Gene expression analysis in multiple organs from obese mice was done with Taqman Low Density Array (TLDA) using a panel of 92 genes representing cell markers, cytokines, chemokines, metabolic, and activation genes. Mice were monitored for systemic changes characteristic of the disease, including hyperinsulinemia, body weight, and liver enzymes. Liver steatosis and fibrosis as well as cellular infiltrates in liver and adipose tissues were analyzed by histology and immunohistochemistry. RESULTS: Obese C57BL/6 mice were fed with high fat and cholesterol diet (HFC) for 6, 16 and 26 weeks. Here we report that the mRNA levels of macrophage and inflammation associated genes were strongly upregulated at different time points in adipose tissues (6-16 weeks) and liver (16-26 weeks), after the start of HFC feeding. CD11b+ and CD11c+ macrophages highly infiltrated HFC liver at 16 and 26 weeks. We found clear evidence that signals for IL-1ß, IL1RN, TNF-α and TGFß-1 are present in both adipose and liver tissues and that these are linked to the development of inflammation and insulin resistance in the HFC-fed mice. CONCLUSIONS: Macrophage infiltration accompanied by severe inflammation and metabolic changes occurred in both adipose and liver tissues with a temporal shift in these signals depending upon the duration of HFC feeding. The evidences of gene expression profile, elevated serum alanine aminotransferase, and histological data support a progression towards nonalcoholic fatty liver disease and steatohepatitis in these HFC-fed mice within the time frame of 26 weeks.

8.
PPAR Res ; 2010: 970164, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20445733

RESUMO

The kinetics of metabolic and inflammatory parameters associated with obesity were evaluated in a murine diet-induced obesity (DIO) model using a diet high in fat and cholesterol. Cellular infiltration and mediator production were assessed and shown to be therapeutically modulated by the PPARgamma agonist rosiglitazone. C57BL/6 mice were maintained on a 45% fat/ 0.12% cholesterol (HF/CH) or Chow diet for 3, 6, 16, or 27 weeks. Flow cytometry was employed to monitor peripheral blood monocytes and adipose tissue macrophages (ATM). Gene expression and protein analysis methods were used to evaluate mediator production from total epididymal fat (EF), stromal vascular fraction (SVF), and sorted SVF cells. To investigate therapeutic intervention, mice were fed a HF/CH diet for 12 weeks and then a diet formulated with rosiglitazone (5 mg/kg) for an additional 6 weeks. A HF/CH diet correlated with obesity and a dramatic proinflammatory state. Therapeutic intervention with rosiglitazone attenuated the HF/CH induced inflammation. In addition, a novel population was found that expressed the highest levels of the pro-inflammatory mediators CCL2 and IL-6.

9.
World J Gastroenterol ; 15(44): 5549-57, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19938193

RESUMO

AIM: To investigate the effect of short-chain fatty acids (SCFAs) on production of prostaglandin E(2) (PGE(2)), cytokines and chemokines in human monocytes. METHODS: Human neutrophils and monocytes were isolated from human whole blood by using 1-Step Polymorph and RosetteSep Human Monocyte Enrichment Cocktail, respectively. Human GPR41 and GPR43 mRNA expression was examined by quantitative real-time polymerase chain reaction. The calcium flux assay was used to examine the biological activities of SCFAs in human neutrophils and monocytes. The effect of SCFAs on human monocytes and peripheral blood mononuclear cells (PBMC) was studied by measuring PGE(2), cytokines and chemokines in the supernatant. The effect of SCFAs in vivo was examined by intraplantar injection into rat paws. RESULTS: Human GPR43 is highly expressed in human neutrophils and monocytes. SCFAs induce robust calcium flux in human neutrophils, but not in human monocytes. In this study, we show that SCFAs can induce human monocyte release of PGE(2) and that this effect can be enhanced in the presence of lipopolysaccharide (LPS). In addition, we demonstrate that PGE(2) production induced by SCFA was inhibited by pertussis toxin, suggesting the involvement of a receptor-mediated mechanism. Furthermore, SCFAs can specifically inhibit constitutive monocyte chemotactic protein-1 (MCP-1) production and LPS-induced interleukin-10 (IL-10) production in human monocytes without affecting the secretion of other cytokines and chemokines examined. Similar activities were observed in human PBMC for the release of PGE(2), MCP-1 and IL-10 after SCFA treatment. In addition, SCFAs inhibit LPS-induced production of tumor necrosis factor-alpha and interferon-gamma in human PBMC. Finally, we show that SCFAs and LPS can induce PGE(2) production in vivo by intraplantar injection into rat paws (P < 0.01). CONCLUSION: SCFAs can have distinct antiinflammatory activities due to their regulation of PGE(2), cytokine and chemokine release from human immune cells.


Assuntos
Anti-Inflamatórios/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Ácidos Graxos Voláteis/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Quimiocinas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Monócitos/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Biochem Biophys Res Commun ; 330(2): 467-73, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15796906

RESUMO

The human P2Y6 receptor (hP2Y6) is a member of the G protein-coupled pyrimidinergic P2 receptor family that responds specifically to the extracellular nucleotide uridine diphosphate (UDP). Recently, the hP2Y6 receptor has been reported to mediate monocyte IL-8 production in response to UDP or lipopolysaccharide (LPS), but the role of hP2Y6 in regulating other pro-inflammatory cytokines or mediators is largely unknown. We demonstrate here that UDP specifically induces soluble TNF-alpha and IL-8 production in a promonocytic U937 cell line stably transfected with hP2Y6. However, we did not detect IL-1alpha, IL-1beta, IL-6, IL-10, IL-18, and PGE2 in the conditioned media from the same cell line. These results distinguish UDP/P2Y6 signaling from LPS signaling. Interestingly, UDP induces the production of IL-8, but not TNF-alpha, in human astrocytoma 1321N1 cell lines stably transfected with hP2Y6. Therefore, the immune effect of UDP/P2Y6 signaling on the production of proinflammatory cytokines is selective and dependent on cell types. We further identify that UDP can also induce the production of proinflammatory chemokines MCP-1 and IP-10 in hP2Y6 transfected promonocytic U937 cell lines, but not astrocytoma 1321N1 cell lines stably transfected with hP2Y6. From the Taqman analysis, UDP stimulation significantly upregulates the mRNA levels of IL-8, IP-10, and IL-1beta, but not TNF-alpha. Taken together, these new findings expand the pro-inflammatory biology of UDP mediated by the P2Y6 receptor.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Monócitos/efeitos dos fármacos , Receptores Purinérgicos P2/fisiologia , Difosfato de Uridina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Primers do DNA , Humanos , Monócitos/metabolismo , RNA Mensageiro/genética
11.
Bioorg Med Chem Lett ; 13(3): 573-5, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-12565974

RESUMO

Three condensed aromatic peptides SCH79235 (1), SCH79236 (2), and SCH204698 (3) were isolated from the fermentation broth of a Streptomycete microorganism. The structure of SCH204698 (3) was established by extensive NMR spectral data. All these compounds exhibited good activity against CD28-CD80 binding with an IC(50) of 0.42, 0.38 and 0.22 microM, respectively.


Assuntos
Antígeno B7-1/efeitos dos fármacos , Antígenos CD28/efeitos dos fármacos , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Streptomyces/metabolismo , Ligação Competitiva/efeitos dos fármacos , Clorofenóis/química , Clorofenóis/farmacologia , Fermentação , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/química , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA