Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 36(35): 9019-25, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581446

RESUMO

UNLABELLED: Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. SIGNIFICANCE STATEMENT: Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in cerebellar granule cell GABAA receptor responses to recreational concentrations of alcohol are the primary determinant of alcohol's impact on cerebellar processing and that pharmacologically modifying such responses alters alcohol consumption. These data highlight the cerebellum as an important neuroanatomical region in alcohol consumption phenotype and as a target for pharmacological treatment of alcohol use disorders. The results also add to the growing list of cognitive/emotional roles of the cerebellum in psychiatric disease and drug abuse.


Assuntos
Consumo de Bebidas Alcoólicas , Cerebelo , Agonistas GABAérgicos/administração & dosagem , Isoxazóis/administração & dosagem , Receptores de GABA-A/metabolismo , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/patologia , Consumo de Bebidas Alcoólicas/prevenção & controle , Análise de Variância , Animais , Animais Recém-Nascidos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Relação Dose-Resposta a Droga , Etanol/sangue , Etanol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Genótipo , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Técnicas de Patch-Clamp , Piridazinas/farmacologia , Especificidade da Espécie , Sacarose/metabolismo
2.
Alcohol Clin Exp Res ; 40(12): 2491-2498, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27859429

RESUMO

BACKGROUND: The chronic intermittent ethanol (CIE) paradigm is valuable for screening compounds for efficacy to reduce drinking traits related to alcohol use disorder (AUD), as it measures alcohol consumption and preference under physical dependence conditions. Air control-treated animals allow simultaneous testing of similarly treated, nondependent animals. As a consequence, we used CIE to test the hypothesis that tigecycline, a semisynthetic tetracycline similar to minocycline and doxycycline, would reduce alcohol consumption regardless of dependence status. METHODS: Adult C57BL/6J female and male mice were tested for tigecycline efficacy to reduce ethanol (EtOH) consumption using a standard CIE paradigm. The ability of tigecycline to decrease 2-bottle choice of 15% EtOH (15E) versus water intake in dependent (CIE vapor) and nondependent (air-treated) male and female mice was tested after 4 cycles of CIE vapor or air exposure using a within-subjects design and a dose-response. Drug doses of 0, 40, 60, 80, and 100 mg/kg in saline were administered intraperitoneally (0.01 ml/g body weight) and in random order, with a 1-hour pretreatment time. Baseline 15E intake was re-established prior to administration of subsequent injections, with a maximum of 2 drug injections tested per week. RESULTS: Tigecycline was found to effectively reduce high alcohol consumption in both dependent and nondependent female and male mice. CONCLUSIONS: Our data suggest that tigecycline may be a promising drug with novel pharmacotherapeutic characteristics for the treatment of mild-to-severe AUD in both sexes.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Minociclina/análogos & derivados , Consumo de Bebidas Alcoólicas/prevenção & controle , Animais , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/uso terapêutico , Tigeciclina
3.
Alcohol ; 83: 115-125, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529168

RESUMO

Human studies reported that the number of past-year stressors was positively related to current drinking patterns, including binge drinking. In animal models, exposure to predator odor stress (PS), considered a model of traumatic stress, consistently increased ethanol intake. Recently, we reported that repeated PS significantly increased ethanol intake and had a synergistic interaction with prior binge drinking (binge group) in male but not in female C57BL/6J mice, when compared to mice without prior binge exposure (control group). The current studies utilized plasma and dissected prefrontal cortex (PFC) and hippocampal tissue from these animals and from age-matched naïve mice (naïve group). Western blots assessed relative protein levels of P450scc (an enzyme involved in the first step of steroidogenesis), of GABAA receptor α2 and α4 subunits, and of two proteins involved in synaptic plasticity - ARC (activity-regulated cytoskeletal protein) and synaptophysin. Gas chromatography-mass spectrometry simultaneously quantified 10 neurosteroid levels in plasma. A history of ethanol drinking and PS exposure produced brain regional and sex differences in the changes in proteins examined as well as in the pattern of neurosteroid levels versus (vs.) values in naïve mice. For instance, P450scc levels were significantly increased only in binge and control female PFC and hippocampus vs. naïve mice. Some neurosteroid levels were significantly altered by binge treatment in both males and females, whereas others were only significantly altered in males. These sexually divergent changes in neurosteroid and protein levels add to evidence for sex differences in the neurochemical systems influenced by traumatic stress and a history of ethanol drinking.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Química Encefálica , Proteínas do Tecido Nervoso/análise , Neuroesteroides/sangue , Transtornos de Estresse Pós-Traumáticos/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Animais , Feminino , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/química , Fatores Sexuais , Transtornos de Estresse Pós-Traumáticos/psicologia
4.
Neuroscience ; 397: 127-137, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30513375

RESUMO

Sensitivity to anticonvulsant effects of the γ-aminobutyric acidA receptor-active neurosteroid allopregnanolone (ALLO) during ethanol withdrawal varies across genotypes, with high sensitivity in genotypes with mild withdrawal and low sensitivity in genotypes with high withdrawal. The present studies determined whether the resistance to ALLO during withdrawal in mouse genotypes with high handling-induced convulsions (HICs) during withdrawal could be overcome with use of ganaxolone (GAN), the metabolically stable derivative of ALLO. In separate studies, male and female Withdrawal Seizure-Prone (WSP-1) and DBA/2J (D2) mice were exposed to air (controls) or 72-h ethanol vapor and then were scored for HICs during withdrawal (hourly for the first 12 h, then at hours 24 and 25). After the HIC scoring at hours 5 and 9, mice were injected with 10 mg/kg GAN or vehicle. Area under the HIC curve (AUC) for hours 5-12 was analyzed. In control WSP-1 mice, GAN significantly reduced AUC by 52% (males) and 63% (females), with effects that were absent or substantially reduced during withdrawal. In contrast, GAN significantly reduced AUC in both control and ethanol-withdrawing male and female D2 mice. AUC was decreased by 81% (males) and 70% (females) in controls and by 35% (males) and 21% (females) during withdrawal. The significant anticonvulsant effect of GAN during withdrawal in D2 but not WSP-1 mice suggests that different mechanisms may contribute to ALLO insensitivity during withdrawal in these two genotypes. Importantly, the results in D2 mice suggest that GAN may be a useful treatment for ethanol withdrawal-induced seizures.


Assuntos
Convulsões por Abstinência de Álcool/tratamento farmacológico , Convulsões por Abstinência de Álcool/genética , Anticonvulsivantes/farmacologia , Pregnanolona/análogos & derivados , Animais , Feminino , Predisposição Genética para Doença , Genótipo , Masculino , Camundongos Endogâmicos DBA , Pregnanolona/farmacologia , Fatores Sexuais , Especificidade da Espécie
5.
Psychopharmacology (Berl) ; 236(6): 1817-1828, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30645681

RESUMO

RATIONALE: Sporadic reports of alcohol consumption being linked to menstrual cycle phase highlight the need to consider hormonally characterized menstrual cycle phase in understanding the sex-specific effects of risk for alcohol drinking in women. OBJECTIVES: We investigated the association between menstrual cycle phase, characterized by circulating progesterone and menses, with accurate daily alcohol intakes in rhesus monkeys, and the contribution of progesterone derived neuroactive steroids to cycle-related alcohol drinking. METHODS: Menses (daily) and progesterone (2-3×/week) were obtained in female monkeys (n = 8, 5 ethanol, 3 control) for 12-18 months. Ethanol monkeys were then induced to drink ethanol (4% w/v; 3 months) and given 22 h/day access to ethanol and water for approximately 1 year. In selected cycles, a panel of neuroactive steroids were assayed during follicular and luteal phases from pre-ethanol and ethanol exposure. RESULTS: There were minimal to no effects of ethanol on menstrual cycle length, progesterone levels, and follicular or luteal phase length. The monkeys drank more ethanol during the luteal phase, compared to the follicular phase, and ethanol intake was highest in the late luteal phase when progesterone declines rapidly. Two neuroactive steroids were higher during the luteal phase versus the follicular phase, and several neuroactive steroids were higher in the pre- vs. post-ethanol drinking menstrual cycles. CONCLUSIONS: This is the first study to show that normal menstrual cycle fluctuations in progesterone, particularly during the late luteal phase, can modulate ethanol intake. Two of 11 neuroactive steroids were selectively associated with the effect of cycle progesterone on ethanol drinking, suggesting possible links to CNS mechanisms of ethanol intake control.


Assuntos
Consumo de Bebidas Alcoólicas/sangue , Etanol/administração & dosagem , Fase Luteal/sangue , Fase Luteal/efeitos dos fármacos , Progesterona/sangue , Consumo de Bebidas Alcoólicas/psicologia , Animais , Estradiol/sangue , Feminino , Humanos , Macaca mulatta , Neurotransmissores/sangue
6.
Alcohol ; 71: 33-45, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29966824

RESUMO

Alcohol-use disorders (AUDs) are characterized by repeated episodes of binge drinking. Based on reports that exposure to predator odor stress (PS) consistently increases ethanol intake, the present studies examined whether prior binge drinking differentially altered responsivity to PS and subsequent ethanol intake in male and female mice, when compared to mice without prior binge exposure. Initial studies in naïve male and female C57BL/6J mice confirmed that 30-min exposure to dirty rat bedding significantly increased plasma corticosterone (CORT) levels and anxiety-related behavior, justifying the use of dirty rat bedding as PS in the subsequent drinking studies. Next, separate groups of male and female C57BL/6J mice received seven binge ethanol sessions (binge) or drank water (controls), followed by a 1-month period of abstinence. Then, 2-bottle choice ethanol intake (10% or 10E vs. water, 23 h/day) was measured in lickometer chambers for 4 weeks. After baseline intake stabilized, exposure to intermittent PS (2×/week × 2 weeks) significantly enhanced ethanol intake after the 2nd PS in male, but not female, binge mice vs. baseline and vs. the increase in controls. However, in a subgroup of females (with low baselines), PS produced a similar increase in 10E intake in control and binge mice vs. baseline. Analysis of lick behavior determined that the enhanced 10E intake in binge male mice and in the female low baseline subgroup was associated with a significant increase in 10E bout frequency and 10E licks throughout the circadian dark phase. Thus, PS significantly increased 10E intake and had a synergistic interaction with prior binge drinking in males, whereas PS produced a similar significant increase in 10E intake in the low baseline subgroup of binge and control females. Plasma CORT levels were increased significantly in both binge and control animals after PS. CORT levels at 24-h withdrawal from daily 10E intake were highest in the groups with elevated 10E licks (i.e., binge males and control females). At 24-h withdrawal, protein levels of GABAA receptor α1 subunit, corticotropin releasing factor receptor 1, and glucocorticoid receptor in prefrontal cortex (PFC) and hippocampus (HC) were differentially altered in the male and female mice vs. levels in separate groups of age-matched naïve mice, with more changes in HC than in PFC and in females than in males. Importantly, the sexually divergent changes in protein levels in PFC and HC add to evidence for sex differences in the neurochemical systems influenced by stress and binge drinking, and argue for sex-specific pharmacological strategies to treat AUD.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Caracteres Sexuais , Estresse Psicológico/psicologia , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Roupas de Cama, Mesa e Banho/efeitos adversos , Consumo Excessivo de Bebidas Alcoólicas/sangue , Consumo Excessivo de Bebidas Alcoólicas/complicações , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Corticosterona/sangue , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/sangue , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo
7.
Psychopharmacology (Berl) ; 234(18): 2793-2811, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28664280

RESUMO

RATIONALE: Endogenous γ-aminobutyric acidA receptor (GABAAR)-active neurosteroids (e.g., allopregnanolone) regulate central nervous system excitability and many physiological functions, so fluctuations are implicated in several neuropsychiatric disorders. Pertinently, evidence supports an inverse relationship between endogenous GABAAR-active neurosteroid levels and behavioral changes in excitability during ethanol withdrawal (WD). OBJECTIVES: The present studies determined mouse genotype differences in ten neurosteroid levels in plasma, cortex, and hippocampus over the time course of ethanol WD in the WD Seizure-Prone (WSP) and WD Seizure-Resistant (WSR) selected lines and in the DBA/2J (DBA) inbred strain. METHODS: Gas chromatography-mass spectrometry was utilized to simultaneously quantify neurosteroid levels from control-treated male WSP-1, WSR-1, and DBA mice and during 8 and 48 h of WD. RESULTS: Combined with our prior work, there was a consistent decrease in plasma allopregnanolone levels at 8 h WD in all three genotypes, an effect that persisted at 48 h WD only in DBA mice. WSR-1 and WSP-1 mice exhibited unexpected divergent changes in cortical neurosteroids at 8 h WD, with the majority of neurosteroids (including allopregnanolone) being significantly decreased in WSR-1 mice, but unaffected or significantly increased in WSP-1 mice. In DBA mice, hippocampal allopregnanolone and tetrahydrodeoxycorticosterone were significantly decreased at 8 h WD. The pattern of significant correlations between allopregnanolone and other GABAAR-active neurosteroid levels differed between controls and withdrawing mice. CONCLUSIONS: Ethanol WD dysregulated neurosteroid synthesis. Results in WSP-1 mice suggest that diminished GABAAR function is more important for their high WD phenotype than fluctuations in neurosteroid levels.


Assuntos
Alcoolismo/metabolismo , Córtex Cerebral/metabolismo , Etanol/administração & dosagem , Hipocampo/metabolismo , Neurotransmissores/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Administração por Inalação , Alcoolismo/genética , Alcoolismo/psicologia , Animais , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Neurotransmissores/sangue , Pregnanolona/sangue , Pregnanolona/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia
8.
Psychopharmacology (Berl) ; 231(17): 3401-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24871700

RESUMO

RATIONALE: The rapid membrane actions of neuroactive steroids, particularly via an enhancement of γ-aminobutyric acidA receptors (GABAARs), participate in the regulation of central nervous system excitability. Prior evidence suggests an inverse relationship between endogenous GABAergic neuroactive steroid levels and behavioral changes in excitability during ethanol withdrawal. OBJECTIVES: Previously, we found that ethanol withdrawal significantly decreased plasma allopregnanolone (ALLO) levels, a potent GABAergic neuroactive steroid, and decreased GABAAR sensitivity to ALLO in Withdrawal Seizure-Prone (WSP) but not in Withdrawal Seizure-Resistant (WSR) mice. However, the effect of ethanol withdrawal on levels of other endogenous GABAAR-active steroids is not known. METHODS: After validation of a gas chromatography-mass spectrometry method for the simultaneous quantification of ten neuroactive steroids, we analyzed plasma from control male WSP-1 and WSR-1 mice and during ethanol withdrawal. RESULTS: We quantified levels of nine neuroactive steroids in WSP-1 and WSR-1 plasma; levels of pregnanolone were not detectable. Basal levels of five neuroactive steroids were higher in WSR-1 versus WSP-1 mice. Ethanol withdrawal significantly suppressed five neuroactive steroids in WSP-1 and WSR-1 mice, including ALLO. CONCLUSIONS: Due to lower basal levels of some GABAAR-active steroids in WSP-1 mice, a withdrawal-induced decrease in WSP-1 mice may have a greater physiological consequence than a similar decrease in WSR-1 mice. Because WSP-1 mice also exhibit a reduction in GABAAR sensitivity to neuroactive steroids during withdrawal, it is possible that the combined decrease in neuroactive steroids and GABAAR sensitivity during ethanol withdrawal in WSP-1 mice represents a neurochemical substrate for severe ethanol withdrawal.


Assuntos
Depressores do Sistema Nervoso Central , Etanol , Neurotransmissores/sangue , Convulsões/sangue , Síndrome de Abstinência a Substâncias/sangue , Animais , Doença Crônica , Masculino , Camundongos , Pregnanolona/sangue , Receptores de GABA-A/metabolismo , Reprodutibilidade dos Testes , Convulsões/genética , Convulsões/psicologia , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA