RESUMO
Bilaterian animals have a Hox gene cluster essential for patterning the main body axis, and a ParaHox gene cluster. Comparison of Hox and ParaHox genes has led workers to postulate that both clusters originated from the duplication of an ancient cluster named ProtoHox, which contained up to four genes with at least the precursors of anterior and posterior Hox/ParaHox genes. However, the way in which genes diversified within the ProtoHox, Hox and ParaHox clusters remains unclear because no systematic study of non-bilaterian animals exists. Here we characterize the full Hox/ParaHox gene complements and genomic organization in two cnidarian species (Nematostella vectensis and Hydra magnipapillata), and suggest a ProtoHox cluster simpler than originally thought on the basis of three arguments. First, both species possess bilaterian-like anterior Hox genes, but their non-anterior genes do not appear as counterparts of either bilaterian central or posterior genes; second, two clustered ParaHox genes, Gsx and a gene related to Xlox and Cdx, are found in Nematostella vectensis; and third, we do not find clear phylogenetic support for a common origin of bilaterian Cdx and posterior genes, which might therefore have appeared after the ProtoHox cluster duplication. Consequently, the ProtoHox cluster might have consisted of only two anterior genes. Non-anterior genes could have appeared independently in the Hox and ParaHox clusters, possibly after the separation of bilaterians and cnidarians.
Assuntos
Cnidários/genética , Genes Homeobox/genética , Família Multigênica/genética , Animais , Evolução Molecular , Genoma , Proteínas de Homeodomínio/genética , FilogeniaRESUMO
Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near-surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation-induced fractionation, but the processes are poorly constrained by observations. Understanding and quantifying these processes are crucial to both the interpretation of ice core climate proxies and the formulation of isotope-enabled general circulation models. Here, we present continuous measurements of the water isotopic composition in surface snow and atmospheric vapor together with near-surface atmospheric turbulence and snow-air latent and sensible heat fluxes, obtained at the East Greenland Ice-Core Project drilling site in summer 2016. For two 4-day-long time periods, significant diurnal variations in atmospheric water isotopologues are observed. A model is developed to explore the impact of this variability on the surface snow isotopic composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow exhibits a diurnal variation with amplitudes in δ18O and δD of ~2.5 and ~13, respectively. As comparison, such changes correspond to 10-20% of the magnitude of seasonal changes in interior Greenland snow pack isotopes and of the change across a glacial-interglacial transition. Importantly, our observation and model results suggest, that sublimation-induced fractionation needs to be included in simulations of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud-free conditions in northeast Greenland.
Assuntos
Genoma , Urocordados/genética , Animais , Cromossomos Artificiais Bacterianos , Ciona intestinalis/genética , Clonagem Molecular , DNA Complementar , DNA Intergênico , Etiquetas de Sequências Expressas , Genes , Íntrons , Masculino , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Espermatozoides/química , Urocordados/anatomia & histologia , Urocordados/crescimento & desenvolvimentoRESUMO
The (114) surface of the semimetal Bi is found to support a quasi-one-dimensional, metallic surface state. As required by symmetry, the state is degenerate along the Gamma-Y line of the surface Brillouin zone with a highest binding energy of approximately 150 meV. In the Gamma-X direction the degeneracy is lifted by the strong spin-orbit splitting in Bi, as directly shown by spin-resolved photoemission. This results in a Fermi contour consisting of two closely separated, parallel lines of opposite spin direction. It is argued that similar states on related insulators would give rise to a one-dimensional quantum spin Hall effect.