Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Circ Res ; 127(9): 1122-1137, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762495

RESUMO

RATIONALE: Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-ß (transforming growth factor ß) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE: We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS: We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS: These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Malformações Arteriovenosas/prevenção & controle , Células Endoteliais/metabolismo , Telangiectasia Hemorrágica Hereditária/metabolismo , Receptores de Activinas Tipo II/deficiência , Receptores de Activinas Tipo II/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Malformações Arteriovenosas/genética , Modelos Animais de Doenças , Endoglina/deficiência , Endoglina/genética , Endoglina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA não Traduzido , Receptores Notch/genética , Receptores Notch/metabolismo , Vasos Retinianos/anormalidades , Transdução de Sinais , Pele/irrigação sanguínea , Pele/lesões , Proteína Smad4/genética , Proteína Smad4/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador beta
2.
Cell Tissue Res ; 376(2): 153-163, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30506393

RESUMO

In mice, retinal ganglion cells (RGCs), which consist of around 30 subtypes, exclusively transmit retinal information to the relevant brain systems through parallel visual pathways. The superior colliculus (SC) receives the vast majority of this information from several RGC subtypes. The objective of the current study is to identify the types of calretinin (CR)-expressing RGCs that project to the SC in mice. To label RGCs, we performed CR immunoreactivity in the mouse retina after injections of fluorescent dye, dextran into mouse SC. Subsequently, the neurons double-labeled for dextran and CR were iontophoretically injected with the lipophilic dye, DiI, to characterize the detailed morphological properties of these cells. The analysis of various morphological parameters, including dendritic arborization, dendritic field size and stratification, indicated that, of the ten different types of CR-expressing RGCs in the retina, the double-labeled cells consisted of at least eight types of RGCs that projected to the SC. These cells tended to have small-medium field sizes. However, except for dendritic field size, the cells did not exhibit consistent characteristics for the other morphometric parameters examined. The combination of a tracer and single-cell injections after immunohistochemistry for a particular molecule provided valuable data that confirmed the presence of distinct subtypes of RGCs within multiple-labeled RGCs that projected to specific brain regions.


Assuntos
Calbindina 2/metabolismo , Células Ganglionares da Retina , Colículos Superiores/metabolismo , Animais , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Análise de Célula Única , Vias Visuais
3.
Hum Genet ; 135(3): 287-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749107

RESUMO

Gap junctions (GJs) are intercellular channels associated with cell-cell communication. Connexin 26 (Cx26) encoded by the GJB2 gene forms GJs of the inner ear, and mutations of GJB2 cause congenital hearing loss that can be syndromic or non-syndromic. It is difficult to predict pathogenic effects using only genetic analysis. Using ionic and biochemical coupling tests, we evaluated the pathogenic effects of Cx26 variants using computational analyses to predict structural abnormalities. For seven out of ten variants, we predicted the variation would result in a loss of GJ function, whereas the others would completely fail to form GJs. Functional studies demonstrated that, although all variants were able to function normally as hetero-oligomeric GJ channels, six variants (p.E47K, p.E47Q, p.H100L, p.H100Y, p.R127L, and p.M195L) did not function normally as homo-oligomeric GJ channels. Interestingly, GJs composed of the Cx26 variant p.R127H were able to function normally, even as homo-oligomeric GJ channels. This study demonstrates the particular location and property of an amino acid are more important mainly than the domain where they belong in the formation and function of GJ, and will provide information that is useful for the accurate diagnosis of hearing loss.


Assuntos
Conexinas/genética , Junções Comunicantes/metabolismo , Variação Genética , Perda Auditiva/genética , Clonagem Molecular , Conexina 26 , Conexinas/metabolismo , Junções Comunicantes/genética , Regulação da Expressão Gênica , Células HeLa , Perda Auditiva/patologia , Humanos , Mutação , Conformação Proteica , Transfecção
4.
Exp Eye Res ; 145: 327-336, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26874036

RESUMO

Single-cell injection after immunocytochemistry is a reliable technique for classifying neurons by their morphological structure and their expression of a particular protein. The aim of the present study was to classify the morphological types of calbindin D28k-immunoreactive retinal ganglion cells in the mouse using single-cell injection after immunocytochemistry, to estimate the density of calbindin D28k-immunoreactive retinal ganglion cells in the mouse retina. Calbindin D28k is an important calcium-binding protein that is widely expressed in the central nervous system. Calbindin D28k-immunoreactive retinal ganglion cells were identified by immunocytochemistry and then iontophoretically injected with the lipophilic dye, DiI. Subsequently, the injected cells were imaged by confocal microscopy to classify calbindin D28k-immunoreactive retinal ganglion cells based on their dendritic ramification depth within the inner plexiform layer, field size, and morphology. The cells were heterogeneous in morphology: monostratified or bistratified, with small to large dendritic field size and sparse to dense dendritic arbors. At least 10 different morphological types (CB1-CB10) of calbindin D28k-immunoreactive retinal ganglion cells were found in the mouse retina. The density of each cell type was quite variable (1.98-23.76%). The density of calbindin D28k-immunoreactive cells in the ganglion cell layer of the mouse retina was 562 cells/mm(2), 8.18% of calbindin D28k-immunoreactive cells were axon-less displaced amacrine cells, 91.82% were retinal ganglion cells, and approximately 18.17% of mouse retinal ganglion cells expressed calbindin D28k. The selective expression of calbindin D28k in cells with different morphologies may provide important data for further physiological studies of the mouse retina.


Assuntos
Calbindina 1/metabolismo , Células Ganglionares da Retina/citologia , Animais , Contagem de Células , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células Ganglionares da Retina/metabolismo
5.
Biochim Biophys Acta ; 1832(1): 285-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22617145

RESUMO

A number of genes responsible for hearing loss are related to ion recycling and homeostasis in the inner ear. Connexins (Cx26 encoded by GJB2, Cx31 encoded by GJB3 and Cx30 encoded by GJB6) are core components of gap junctions in the inner ear. Gap junctions are intercellular communication channels and important factors that are associated with hearing loss. To date, a molecular genetics study of GJB3 and GJB6 as a causative gene for hearing loss has not been performed in Korea. This study was therefore performed to elucidate the genetic characteristics of Korean patients with nonsyndromic sensorineural hearing loss and to determine the pathological mechanism of hearing loss by analyzing the intercellular communication function of Cx30 and Cx31 variants. Sequencing analysis of the GJB3 and GJB6 genes in our population revealed a total of nine variants, including four novel variants in the two genes. Three of the novel variants (Cx31-p.V27M, Cx31-p.V43M and Cx-30-p.I248V) and two previously reported variants (Cx31-p.V84I and Cx30-p.A40V) were selected for functional studies using a pathogenicity prediction program and assessed for whether the mutations were located in a conserved region of the protein. The results of biochemical and ionic coupling tests showed that both the Cx31-p.V27M and Cx31-p.V84I variants did not function normally when each was expressed as a heterozygote with the wild-type Cx31. This study demonstrated that two variants of Cx31 were pathogenic mutations with deleterious effect. This information will be valuable in understanding the pathogenic role of GJB3 and GJB6 mutations associated with hearing loss.


Assuntos
Conexinas/genética , Variação Genética , Perda Auditiva Neurossensorial/genética , Cálcio/metabolismo , Conexina 26 , Conexina 30 , Conexinas/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Mutação de Sentido Incorreto
6.
Exp Eye Res ; 122: 54-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631336

RESUMO

Direction-selective retinal ganglion cells (DS RGCs) respond strongly to a stimulus that moves in their preferred direction, but respond weakly or do not respond to a stimulus that moves in the opposite or null direction. DS RGCs are sensitive to acetylcholine, and starburst amacrine cells (SACs) make cholinergic synapses on DS RGCs. We studied the distributions of nicotinic acetylcholine receptor (nAChR) α7 and ß2 subunits on the dendritic arbors of DS RGCs to search for anisotropies that contribute to the directional preferences of DS RGCs. The DS RGCs from the retinas of postnatal mice (postnatal day P5, P10, and P15) were injected with Lucifer yellow, and injected cells were identified by their dendritic morphology. The dendrites of the DS RGCs were labeled with antibodies for either the nAChR α7 or ß2 subunit as well as postsynaptic density protein-95 (PSD-95), visualized by confocal microscopy, and reconstructed from high-resolution confocal images. The distribution of nAChR subunits on the dendritic arbors in both the ON and OFF layers of the RGCs revealed an asymmetrical pattern on early postnatal day P5. However, the distributions of nAChR subunits on the dendritic arbors were not asymmetric on P10 and P15. Our results therefore provide anatomical and developmental evidence suggesting that the nAChR α7 and ß2 subunits may involve in the early direction-selectivity formation of DS RGCs in the mouse retina.


Assuntos
Dendritos/metabolismo , Receptores Nicotínicos/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Animais Recém-Nascidos , Corantes Fluorescentes , Isoquinolinas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência , Sinapses/fisiologia
7.
Zoolog Sci ; 31(11): 748-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25366158

RESUMO

Parvalbumin (PV) is thought to play a major role in buffering intracellular calcium. We studied the distribution, morphology of PV-immunoreactive (IR) cells, and the effect of enucleation on the PV distribution in the superior colliculus (SC) in dog (Canis familiaris) and compared PV labeling to that of calbindin D28K (CB) and GABA. These cells formed three laminar tiers in the dog SC; 1) the upper superficial gray layer (SGL), 2) the lower optic layer (OL) and the upper intermediate gray layer, and 3) the deep layer. The third tier was not very distinct when compared with the other two tiers. The distribution of PV-IR cells is thus complementary to that of CB-IR tiers. Our present data on the distribution of PV-IR cells within the superficial layers are strikingly different from those in previously studied mammals, which show PV-IR cells within the lower SGL and upper OL. However, there were no distinct differences in distribution within the deep layers compared with that of previously studied mammals. PV-IR cells in the SC varied dramatically in morphology and size, and included round/oval, vertical fusiform, stellate, horizontal and pyriform cells. Two-color immunofluorescence revealed quantitatively that 11.67% of the PV-IR cells colocalized with GABA. Monocular enucleation appeared to have no effect on the distribution of PV-IR cells in the contralateral SC. Similar to CB, these data suggest that retinal projection may not control the expression of PV in the dog SC. These results provide important information for delineating similarities and differences in the neurochemical architecture of the visual system.


Assuntos
Cães/fisiologia , Enucleação Ocular/veterinária , Parvalbuminas/metabolismo , Colículos Superiores/citologia , Ácido gama-Aminobutírico/metabolismo , Animais , Neurônios/metabolismo , Neurônios/ultraestrutura , Colículos Superiores/fisiologia
8.
Folia Histochem Cytobiol ; 62(1): 37-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563048

RESUMO

INTRODUCTION: Nitric oxide (NO) is present in various cell types in the central nervous system and plays a crucial role in the control of various cellular functions. The diurnal Mongolian gerbil is a member of the rodent family Muridae that exhibits unique physiological, anatomical, and behavioral differences from the nocturnal rat and mouse, which render it a useful model for studying the visual system. The purpose of this study was to confirm the distribution and morphology of neurons that contain nitric oxide synthase (NOS) and their pattern of co-expressing NOS with neuropeptide Y (NPY), somatostatin (SST), and gamma-aminobutyric acid (GABA) in the visual cortex of Mongolian gerbils. MATERIALS AND METHODS: Mongolian gerbils were used in the study. We confirmed the localization of NOS in the visual cortex of Mongolian gerbils using horseradish peroxidase immunocytochemistry, fluorescent immunocytochemistry, and conventional confocal microscopy. RESULTS: NOS-immunoreactive (IR) neurons were present in all layers of the visual cortex of the Mongolian gerbil, with the exception of layer I, with the highest density observed in layer V (50.00%). The predominant type of NOS-IR neurons was multipolar round/oval cells (60.96%). Two-color immunofluorescence revealed that 100% NOS-IR neurons were co-labeled with NPY and SST and 34.55% were co-labeled with GABA. CONCLUSIONS: Our findings of the laminar distribution and morphological characteristics of NOS-IR neurons, as well as the colocalization patterns of NOS-IR neurons with NPY, SST, and GABA, indicated the presence of species-specific differences, suggesting the functional diversity of NO in the visual cortex. This study provides valuable data on the anatomical organization of NOS-IR neurons and, consequently, a better understanding of the functional aspects of NO and species diversity.


Assuntos
Neurônios , Córtex Visual , Ratos , Camundongos , Animais , Gerbillinae/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Exp Eye Res ; 110: 113-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23518406

RESUMO

A calcium-binding protein, parvalbumin (PV), is widely distributed in the central nervous system and is expressed in the retinal neurons of various vertebrate species. The present study was aimed at describing the types and density of PV-containing retinal ganglion cells (RGCs) in rabbits by using single-cell injection after immunocytochemistry. PV-containing RGCs were first identified by immunocytochemistry and were then iontophoretically injected with a lipophilic dye, DiI. Subsequently, confocal microscopy was used to characterize the morphological classification of the PV-immunoreactive (IR) ganglion cells on the basis of their dendritic field size, branching pattern, and stratification within the inner plexiform layer. The results indicated that at least 8 morphologically different types of rabbit RGCs express PV. They were heterogeneous in terms of their morphology. The present study showed that the proportion of RGCs that contained PV was between 17% and 19% of the total number of ganglion cells. The density of PV-IR RGCs in the rabbit retina was 144 cells/mm(2). Also, it was found that PV was present in all cholinergic amacrine cells in the ganglion cell layer (GCL) and the inner nuclear layer (INL). This integrated approach of characterizing the cell morphology and the selective expression of a particular protein will lead to a better understanding of the properties of RGCs.


Assuntos
Parvalbuminas/metabolismo , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Animais , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Conexinas/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Injeções , Iontoforese , Masculino , Coelhos , Análise de Célula Única
10.
Folia Histochem Cytobiol ; 61(2): 81-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435896

RESUMO

INTRODUCTION: While most animals of the Muridae family are nocturnal, the gerbil displays diurnal activity and provides a useful model for visual system research. The purpose of this study was to investigate the localization of calcium-binding proteins (CBPs) in the visual cortex of the Mongolian gerbil (Meriones unguiculatus). We also compared the labeling of CBPs to those of gamma-aminobutyric acid (GABA)- and nitric oxide synthase (NOS)-containing neurons. MATERIAL AND METHODS: The study was conducted on twelve adult Mongolian gerbils (3-4 months old). We used horseradish peroxidase immunocytochemistry and two-color fluorescence immunocytochemistry with conventional and confocal microscopy to assess CBPs localization in the visual cortex. RESULTS: The highest density of calbindin-D28K (CB)- (34.18%) and parvalbumin (PV)-IR (37.51%) neurons was found in layer V, while the highest density of calretinin (CR)-IR (33.85%) neurons was found in layer II. The CB- (46.99%), CR- (44.88%), and PV-IR (50.17%) neurons mainly displayed a multipolar round/oval morphology. Two-color immunofluorescence revealed that only 16.67%, 14.16%, and 39.91% of the CB-, CR-, and PV-IR neurons, respectively, contained GABA. In addition, none of the CB-, CR-, and PV-IR neurons contained NOS. CONCLUSIONS: Our findings indicate that CB-, CR-, and PV-containing neurons in the Mongolian gerbil visual cortex are distributed abundantly and distinctively in specific layers and in a small population of GABAergic neurons but are limited to subpopulations that do not express NOS. These data provide a basis for the potential roles of CBP-containing neurons in the gerbil visual cortex.


Assuntos
Parvalbuminas , Córtex Visual , Animais , Calbindina 2 , Gerbillinae , Calbindina 1 , Ácido gama-Aminobutírico
11.
Front Biosci (Landmark Ed) ; 28(5): 92, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37258479

RESUMO

BACKGROUND: Neurodegenerative diseases, such as diabetic retinopathy (DR) and glaucoma, induce retinal neuron loss. Acetylcholine-containing cholinergic neurons, known as starburst amacrine cells (SACs), play critical roles in the generation of precise neuronal activity in the retina and are located in the inner nuclear layer (INL, conventional) and ganglion cell layer (GCL, displaced). METHODS: This study investigated the loss of and morphological changes in SACs in the retinas of streptozotocin (STZ)-induced diabetic and insulin-deficient C57BL/6-Tg(pH1-siRNAinsulin/CMV-hIDE)/Korl (IDCK) mice. SACs were immunocytochemically localized with anti-choline acetyltransferase (ChAT) antibody, and ChAT-labeled cells in the INL and GCL in the control and experimental groups were counted along the central vertical meridian in the whole-mounted retina using conventional fluorescent or confocal microscopes. RESULTS: ChAT-immunoreactive (IR) neurons in STZ-induced diabetic mouse retina decreased by 8.34% at 4-6 weeks and by 14.89% at 42 weeks compared with the control group. Localized ChAT-IR neuron counts in the retinas of 20-week-old IDCK mice were 16.80% lower than those of age-matched control mice. Cell body deformation and aggregation were detected in the retinas of mice with DR. Single-cell injection experiments revealed the loss and deformation of dendritic branches in ChAT-IR neurons in DR. All ChAT-IR neurons expressed the calcium-binding protein calretinin, whereas no ChAT-IR neuron colocalized with calbindin-D28K or parvalbumin. CONCLUSIONS: Our results revealed that the neurodegenerative effects of the loss and deformation of ChAT-IR neurons can provide a reference for future study of this disease.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Células Amácrinas/metabolismo , Retinopatia Diabética/metabolismo , Camundongos Endogâmicos C57BL , Retina , Proteínas de Ligação ao Cálcio/metabolismo , Diabetes Mellitus/metabolismo
12.
Acta Histochem Cytochem ; 45(1): 35-45, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22489103

RESUMO

The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity.

13.
Acta Histochem Cytochem ; 45(3): 201-10, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22829714

RESUMO

The calcium-binding protein parvalbumin (PV) occurs in the retinal ganglion cells (RGCs) of various vertebrate species. In the present study, we aimed to identify the types of PV-containing RGCs that project to the superior colliculus (SC) in the mouse. We injected retrograde tracer dextran into the mouse SC to label RGCs. PV-containing RGCs were first identified by immunocytochemistry and then neurons double-labeled with dextran and PV were iontophoretically injected with a lipophilic dye, DiI. Subsequently, confocal microscopy was used to characterize the morphologic classification of the PV-immunoreactive (IR) retinotectal ganglion cells on the basis of dendritic field size, branching pattern, and stratification within the inner plexiform layer. Among the 8 different types of PV-containing RGCs in the mouse retina, we found all 8 types of RGCs projecting to the SC. The RGCs were heterogeneous in morphology. The combined approach of using tracer injection and a single cell injection after immunocytochemistry on a particular protein will provide valuable data to further understand the functional features of the RGCs which constitute the retinotectal pathway.

14.
Acta Histochem ; 124(7): 151941, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963117

RESUMO

As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.


Assuntos
Decapodiformes , Parvalbuminas , Animais , Calbindina 1 , Calbindina 2 , Decapodiformes/metabolismo , Glutamatos , Imuno-Histoquímica , Parvalbuminas/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
15.
Biomedicines ; 10(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35052772

RESUMO

Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and ß2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.

16.
Mol Med ; 17(5-6): 550-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21298213

RESUMO

Mutations in the gap junction ß2 (GJB2) gene, encoding the connexin26 (CX26) protein, are the most common cause of non-syndromic hearing loss (HL) in many populations. In the East Asian population, two variants, p.V27I (c.79G>A) and p.E114G (c.341G>A), are considered benign polymorphisms since these variants have been identified in both HL patients and normal hearing controls. However, some studies have postulated that homozygotes carrying both p.V27I and p.E114G variants could cause HL. To elucidate possible roles of these variants, we used in vitro approaches to directly assess the pathogenicity of four haplotypes generated by the two polymorphisms: VE (wild type), I*E (p.V27I variant only), VG* (p.E114G variant only), I*G* (both variants). In biochemical coupling assays, the gap junctions (GJs) composed of VG* and I*G* types displayed defective channel activities compared with those of VE wild types or I*E types, which showed normal channel activities. Interestingly, the defect in hemichannel activity was a bit less severe in I*G* type than VG* type, suggesting that I* variant (p.V27I) may compensate for the deleterious effect of G* variant (p.E114G) in hemichannel activities. Our population studies using 412 Korean individuals showed that I*G* type was detected at around 20% in both HL patients and normal controls, suggesting that I*G* type may not be a pathogenic polymorphism. In contrast, VG* type was very rare (3/824) and detected only in HL patients, suggesting that VG* homozygotes (VG*/VG*) or compound heterozygotes carrying VG* type with other mutations may cause HL.


Assuntos
Conexinas/genética , Perda Auditiva/genética , Alelos , Povo Asiático , Linhagem Celular , Conexina 26 , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo Genético/genética
17.
Zoolog Sci ; 28(9): 694-702, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21882959

RESUMO

Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures.


Assuntos
Cães/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Córtex Visual/citologia , Animais , Calbindina 2 , Calbindinas , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Parvalbuminas/genética , Proteína G de Ligação ao Cálcio S100/genética , Córtex Visual/metabolismo
18.
Acta Histochem Cytochem ; 44(5): 213-21, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22096261

RESUMO

Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs.

19.
Cells ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546356

RESUMO

Neuropeptide Y (NPY) is found throughout the central nervous system where it appears to be involved in the regulation of a wide range of physiological effects. The Mongolian gerbil, a member of the rodent family Muridae, is a diurnal animal and has been widely used in various aspects of biomedical research. This study was conducted to investigate the organization of NPY-immunoreactive (IR) neurons in the gerbil visual cortex using NPY immunocytochemistry. The highest density of NPY-IR neurons was located in layer V (50.58%). The major type of NPY-IR neuron was a multipolar round/oval cell type (44.57%). Double-color immunofluorescence revealed that 89.55% and 89.95% of NPY-IR neurons contained gamma-aminobutyric acid (GABA) or somatostatin, respectively. Several processes of the NPY-IR neurons surrounded GABAergic interneurons. Although 30.81% of the NPY-IR neurons contained calretinin, NPY and calbindin-D28K-IR neurons were co-expressed rarely (3.75%) and NPY did not co-express parvalbumin. Triple-color immunofluorescence with anti-GluR2 or CaMKII antibodies suggested that some non-GABAergic NPY-IR neurons may make excitatory synaptic contacts. This study indicates that NPY-IR neurons have a notable architecture and are unique subpopulations of the interneurons of the gerbil visual cortex, which could provide additional valuable data for elucidating the role of NPY in the visual process in diurnal animals.


Assuntos
Neuropeptídeo Y/metabolismo , Córtex Visual/fisiologia , Animais , Gerbillinae , Imuno-Histoquímica
20.
J Neurosci Res ; 88(7): 1445-56, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20029967

RESUMO

In this study we investigated the differentiation of human neural progenitor cells (hNPCs) in vitro to evaluate their differentiation potential and in vivo to explore their viability and behavior following transplantation. Progenitors were maintained as neurospheres in media containing basic fibroblast growth factor and epidermal growth factor. Micropatterned polystyrene substrates were fabricated and coated with ECL (entactin, collagen, and laminin) to provide physical and chemical guidance during the differentiation of the hNPCs. The hNPCs growing on the micropatterned substrates showed no differences in proliferation or differentiation potential compared with those hNPCs growing on the nonpatterned substrates. However, hNPCs cultured on the micropatterned substrates were aligned in the direction of the micropattern compared with those cells growing on the nonpatterned substrates. Furthermore, hNPC migration was directed in alignment with the micropatterned substrates. Transplantation of the hNPCs into the developing retina was used to evaluate their behavior in vivo. Cells displayed extensive survival, differentiation, and morphological integration following xenotransplant into the retina, even in the absence of immunosuppression. Taken together, our results show that these multipotent hNPCs are a neurogenic progenitor population that can be maintained in culture for extended periods. Although the micropatterned substrates have no major effect on the proliferation or differentiation of the hNPCs, they clearly promoted alignment and directed neurite outgrowth along the pattern as well as directing migration of the cells. These approaches may provide important strategies to guide the growth and differentiation of NPCs in vitro and in vivo.


Assuntos
Diferenciação Celular/fisiologia , Meios de Cultura/farmacologia , Sobrevivência de Enxerto/fisiologia , Retina/crescimento & desenvolvimento , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Colágeno/química , Colágeno/farmacologia , Meios de Cultura/química , Humanos , Laminina/química , Laminina/farmacologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Poliestirenos/química , Poliestirenos/farmacologia , Retina/citologia , Retina/cirurgia , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA