Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Angew Chem Int Ed Engl ; 58(34): 11670-11675, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31197930

RESUMO

Ordered graphitic carbon nanosheets (GCNs) were, for the first time, synthesized by the direct condensation of multifunctional phenylacetyl building blocks (monomers) in the presence of phosphorous pentoxide. The GCNs had highly ordered structures with random hole defects and oxygenated functional groups, showing paramagnetism. The results of combined structural and magnetic analyses indicate that the hole defects and functional groups are associated with the appearance and stabilization of unpaired spins. DFT calculations further suggest that the emergence of stabilized spin moments near the edge groups necessitates the presence of functionalized carbon atoms around the hole defects. That is, both hole defects and oxygenated functional groups are essential ingredients for the generation and stabilization of spins in GCNs.

2.
Chemistry ; 24(69): 18158-18179, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30387211

RESUMO

Hydrogen is considered a future energy carrier that could improve energy storage of intermittent solar/wind power to solve energy and environmental problems. Based on such demand, development of electrocatalysts for hydrogen generation has been actively pursued. Although Pt is the most efficient catalyst for the hydrogen evolution reaction (HER), it has limits for widespread application, mainly its low abundance and high cost. Thus, developing an efficient catalyst from non-precious metals that are abundant and inexpensive remains an important challenge to replacement of Pt. Transition metals have been considered possible candidates to replace Pt-based catalysts. In this review, among the transition metals, we focus on recently developed molybdenum-carbon (Mo-C) hybrid materials as electrocatalysts for HER. In particular, the synthesis strategy for Mo-C hybrid electrocatalysts and the role of various carbon nanocomposites in Mo-C hybrid systems are highlighted.

3.
Nano Lett ; 17(10): 6385-6390, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895740

RESUMO

Edged-selectively fluorine (F) functionalized graphene nanoplatelets (EFGnPs-F) with a p-i-n structure of perovskite solar cells achieved 82% stability relative to initial performance over 30 days of air exposure without encapsulation. The enhanced stability stems from F-substitution on EFGnPs; fluorocarbons such as polytetrafluoroethylene are well-known for their superhydrophobic properties and being impervious to chemical degradation. These hydrophobic moieties tightly protect perovskite layers from air degradation. To directly compare the effect of similar hydrophilic graphene layers, edge-selectively hydrogen functionalized graphene nanoplatelet (EFGnPs-H) treated devices were tested under the same conditions. Like the pristine MAPbI3 perovskite devices, EFGnPs-H treated devices were completely degraded after 10 days. The hydrophobic properties of EFGnPs-F were characterized by contact angle measurement. The test results showed great water repellency compared to pristine perovskite films or EFGnPs-H coated films. This resulted in highly air-stable p-i-n perovskite solar cells.

4.
Molecules ; 23(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538327

RESUMO

Hyperbranched macromolecules (HMs, also called hyperbranched polymers) are highly branched three-dimensional (3D) structures in which all bonds converge to a focal point or core, and which have a multiplicity of reactive chain-ends. This review summarizes major types of synthetic strategies exploited to produce HMs, including the step-growth polycondensation, the self-condensing vinyl polymerization and ring opening polymerization. Compared to linear analogues, the globular and dendritic architectures of HMs endow new characteristics, such as abundant functional groups, intramolecular cavities, low viscosity, and high solubility. After discussing the general concepts, synthesis, and properties, various applications of HMs are also covered. HMs continue being materials for topical interest, and thus this review offers both concise summary for those new to the topic and for those with more experience in the field of HMs.


Assuntos
Polímeros/síntese química , Estrutura Molecular , Polimerização , Polímeros/química
5.
Angew Chem Int Ed Engl ; 57(28): 8438-8442, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29624829

RESUMO

There have been extensive efforts to synthesize crystalline covalent triazine-based frameworks (CTFs) for practical applications and to realize their potential. The phosphorus pentoxide (P2 O5 )-catalyzed direct condensation of aromatic amide instead of aromatic nitrile to form triazine rings. P2 O5 -catalyzed condensation was applied on terephthalamide to construct a covalent triazine-based framework (pCTF-1). This approach yielded highly crystalline pCTF-1 with high specific surface area (2034.1 m2 g-1 ). At low pressure, the pCTF-1 showed high CO2 (21.9 wt % at 273 K) and H2 (1.75 wt % at 77 K) uptake capacities. The direct formation of a triazine-based COF was also confirmed by model reactions, with the P2 O5 -catalyzed condensation reaction of both benzamide and benzonitrile to form 1,3,5-triphenyl-2,4,6-triazine in high yield.

6.
Langmuir ; 31(20): 5676-83, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25942431

RESUMO

In recent years, graphene-based materials have been in the forefront as electrode material for electrochemical energy generation and storage. Despite this prevalent interest, synthesis procedures have not attained three important efficiency requirements, that is, cost, energy, and eco-friendliness. In this regard, in the present work, graphene nanoplatelets with selectively functionalized edges (XGnPs) are prepared through a simple, eco-friendly and efficient method, which involves ball milling of graphite in the presence of hydrogen (H2), bromine (Br2), and iodine (I2). The resultant HGnP, BrGnP, and IGnP reveal significant exfoliation of graphite layers, as evidenced by high BET surface area of 414, 595, and 772 m(2) g(-1), respectively, in addition to incorporation of H, Br, and I along with other oxygen-containing functional groups at the graphitic edges. The BrGnP and IGnP are also found to contain 4.12 and 2.20 at % of Br and I, respectively in the graphene framework. When tested as supercapacitor electrode, all XGnPs show excellent electrochemical performance in terms of specific capacitance and durability at high current density and long-term operation. Among XGnPs, IGnP delivers superior performance of 172 F g(-1) at 1 A g(-1) compared with 150 F g(-1) for BrGnP and 75 F g(-1) for HGnP because the large surface area and high surface functionality in the IGnP give rise to the outstanding capacitive performance. Moreover, all XGnPs show excellent retention of capacitance at high current density of 10 A g(-1) and for long-term operation up to 1000 charge-discharge cycles.

7.
Proc Natl Acad Sci U S A ; 109(15): 5588-93, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22454492

RESUMO

Low-cost, high-yield production of graphene nanosheets (GNs) is essential for practical applications. We have achieved high yield of edge-selectively carboxylated graphite (ECG) by a simple ball milling of pristine graphite in the presence of dry ice. The resultant ECG is highly dispersable in various solvents to self-exfoliate into single- and few-layer (≤ 5 layers) GNs. These stable ECG (or GN) dispersions have been used for solution processing, coupled with thermal decarboxylation, to produce large-area GN films for many potential applications ranging from electronic materials to chemical catalysts. The electrical conductivity of a thermally decarboxylated ECG film was found to be as high as 1214 S/cm, which is superior to its GO counterparts. Ball milling can thus provide simple, but efficient and versatile, and eco-friendly (CO(2)-capturing) approaches to low-cost mass production of high-quality GNs for applications where GOs have been exploited and beyond.

8.
Angew Chem Int Ed Engl ; 53(9): 2398-401, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24574032

RESUMO

Heteroatom-doping into graphitic networks has been utilized for opening the band gap of graphene. However, boron-doping into the graphitic framework is extremely limited, whereas nitrogen-doping is relatively feasible. Herein, boron/nitrogen co-doped graphene (BCN-graphene) is directly synthesized from the reaction of CCl4 , BBr3 , and N2 in the presence of potassium. The resultant BCN-graphene has boron and nitrogen contents of 2.38 and 2.66 atom %, respectively, and displays good dispersion stability in N-methyl-2-pyrrolidone, allowing for solution casting fabrication of a field-effect transistor. The device displays an on/off ratio of 10.7 with an optical band gap of 3.3 eV. Considering the scalability of the production method and the benefits of solution processability, BCN-graphene has high potential for many practical applications.

9.
ChemSusChem ; : e202301145, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578225

RESUMO

Graphitic nanoplatelets (GnPs), edge-selectively carboxylated graphitic nanoplatelets (ECGnPs), are functionalized with a carboxylic acid at the edge increasing their surface area, and are highly dispersible in various solvents. However, there is a limit in that the basal plane remains intact because it is functionalized only in the part where the radical is generated at the edge. Here, we activate ECGnPs to have porous structures by flowing CO2 at 900 °C. Etching of the ECGnPs structure was performed through the Boudouard reaction, and the surface area increased from 579 m2 g-1 to a maximum of 2462 m2 g-1. In addition, the pore structure was investigated with various adsorption gases (CH4, Ar, CO2, H2, and N2) according to the reaction time. This study provides the overall green chemistry in that it utilizes CO2 from manufacturing to activation compared to the process of activating with conventional chemical treatment.

10.
J Am Chem Soc ; 135(4): 1386-93, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110522

RESUMO

Edge-selectively functionalized graphene nanoplatelets (EFGnPs) with different functional groups were efficiently prepared simply by dry ball milling graphite in the presence of hydrogen, carbon dioxide, sulfur trioxide, or carbon dioxide/sulfur trioxide mixture. Upon exposure to air moisture, the resultant hydrogen- (HGnP), carboxylic acid- (CGnP), sulfonic acid- (SGnP), and carboxylic acid/sulfonic acid- (CSGnP) functionalized GnPs readily dispersed into various polar solvents, including neutral water. The resultant EFGnPs were then used as electrocatalysts for oxygen reduction reaction (ORR) in an alkaline electrolyte. It was found that the edge polar nature of the newly prepared EFGnPs without heteroatom doping into their basal plane played an important role in regulating the ORR efficiency with the electrocatalytic activity in the order of SGnP > CSGnP > CGnP > HGnP > pristine graphite. More importantly, the sulfur-containing SGnP and CSGnP were found to have a superior ORR performance to commercially available platinum-based electrocatalyst.

11.
J Am Chem Soc ; 135(24): 8981-8, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23711048

RESUMO

The development of a versatile method for nitrogen-doping of graphitic structure is an important challenge for many applications, such as energy conversions and storages and electronic devices. Here, we report a simple but efficient method for preparing nitrogen-doped graphene nanoplatelets via wet-chemical reactions. The reaction between monoketone (C═O) in graphene oxide (GO) and monoamine-containing compound produces imine (Shiff base) functionalized GO (iGO). The reaction between α-diketone in GO and 1,2-diamine (ortho-diamine)-containing compound gives stable pyrazine ring functionalized GO (pGO). Subsequent heat-treatments of iGO and pGO result in high-quality, nitrogen-doped graphene nanoplatelets to be designated as hiGO and hpGO, respectively. Of particular interest, hpGO was found to display the n-type field-effect transistor behavior with a charge neutral point (Dirac point) located at around -16 V. Furthermore, hpGO showed hole and electron mobilities as high as 11.5 and 12.4 cm(2)V(-1)s(-1), respectively.

12.
Chem Rec ; 13(2): 224-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23568831

RESUMO

Graphene, as a single layer of graphite, is currently the focal point of research into condensed matter owing to its promising properties, such as exceptional mechanical strength, high thermal conductivity, large specific surface area, and ultrahigh electron-transport properties. Therefore, various physical and chemical synthetic procedures to prepare graphene and/or graphene nanoplatelets have been rapidly developed. Specifically, the synthesis of edge-selectively functionalized graphene (EFG) has been recently reported by using simple and scalable approaches, such as "direct" Friedel-Crafts acylation reactions in a mild acidic medium and a mechanochemical ball-milling process. In these approaches, chemical functionalization predominantly take place at the edges of the graphitic layers via the covalent attachment of targeted organic "molecular wedges". In addition, the distortion of the crystalline structures in the basal plane, which is beneficial for preserving the unique properties of the graphitic framework, can be minimized. In addition, the efficient exfoliation of graphene can be achieved, owing to the strong repulsive forces from the covalently linked wedges and strong shear forces during the reaction. Furthermore, EFG shows promising potential in many useful applications, such as highly conductive large-area films, metal-free electrocatalysts for the oxygen-reduction reaction (ORR), and as additives in composite materials with enhanced properties. Herein, we summarize the recent progress and general aspects of EFG, including synthesis, reaction mechanism, properties, and applications.

13.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764642

RESUMO

Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER.

14.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365726

RESUMO

Although polymers are very important and vastly used materials, their physical properties are limited. Therefore, they are reinforced with fillers to relieve diverse restrictions and expand their application areas. The exceptional properties of graphene make it an interesting material with huge potential for application in various industries and devices. The interfacial interaction between graphene and the polymer matrix improved the uniform graphene dispersion in the polymer matrix, enhancing the general nanocomposite performance. Therefore, graphene functionalization is essential to enhance the interfacial interaction, maintain excellent properties, and obstruct graphene agglomeration. Many studies have reported that graphene/polymer nanocomposites have exceptional properties that enable diverse applications. The use of graphene/polymer nanocomposites is expected to increase sustainably and to transform from a basic to an advanced material to offer optimum solutions to industry and consumers.

15.
Chem Asian J ; 15(15): 2282-2293, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31729172

RESUMO

Nonmetallic carbon-based nanomaterials (CNMs) are important in various potential applications, especially after the emergence of graphene and carbon nanotubes, which demonstrate outstanding properties arising from their unique nanostructures. The pristine graphitic structure of CNMs consists of sp2 hybrid C-C bonds and is considered to be neutral in nature with low wettability and poor reactivity. To improve its compatibility with other materials and, hence, for greater applicability, CNMs are generally required to be functionalized effectively and/or doped with heteroatoms in their graphitic frameworks for feasible interfacial interactions. Among the various possible functional/doping elements, nitrogen (N) atoms have received much attention given their potential to fine tune the intrinsic properties, such as the work-function, charge carrier concentration, surface energy, and polarization, of CNMs. N-doping improves the surface energy and reactivity with enhanced charge polarization and minimal damage to carbon frameworks. The modified surface energy and chemical activity of N-doped carbon nanomaterials (NCNMs) can be useful for a broad range of applications, including fuel cells, solar cells, Li-ion batteries, supercapacitors, chemical catalysts, catalyst supports, and so forth.

16.
ACS Nano ; 13(5): 5893-5899, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31082198

RESUMO

Carbon-based catalysts have attracted much attention for the dehydrogenation (DH) of organic molecules, due to their rich active sites, high conversion efficiency, and selectivity. However, because of their poor stability at high operation temperature and relatively high cost, their practical applications have been limited. Here, we report a simple ball-milling-induced mechanochemical reaction which can introduce iron (Fe) and different functional groups (mostly stable aromatic C═O after heat-treatment) along the edges of graphitic nanoplatelets. The resulting Fe-graphitic nanoplatelets (Fe-XGnPs, X = H, C, N, or V) provide active sites for the oxidative dehydrogenation (ODH) of ethylbenzene into styrene. Among them, Fe-NGnPs (X = N) displayed the highest performance for styrene production at low temperature (∼11.13 mmol g-1 h-1, 450 °C) with high selectivity and durability.

17.
Adv Mater ; 30(44): e1803676, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30216563

RESUMO

Catalysts are at the heart of the hydrogen evolution reaction (HER) for the production of pure and clean hydrogen. For practical applications, the scalable synthesis of efficient HER catalysts, which work in both acidic and alkaline media, is highly desired. In this work, the mechanochemically assisted synthesis of a Ru catalyst with HER performance surpassing Pt in both acidic and alkaline media is reported. Mass production of this Ru catalyst can be achieved via a two-step procedure: the mechanochemical reaction between graphite and dry ice produces edge-carboxylic-acid-functionalized graphene nanoplatelets (CGnP); mixing a Ru precursor and the CGnP in an aqueous medium introduces Ru ions, which coordinate on the CGnP. Subsequent annealing results in uniform Ru nanoparticles (≈2 nm) anchored on the GnP matrix (Ru@GnP). The efficient Ru@GnP catalyst can be easily powered by a single silicon solar cell using a wireless integration device. The self-powered device exhibits robust hydrogen evolution under the irradiation of standard AM 1.5 solar light. This work provides a new opportunity for the low-cost mass production of efficient and stable catalysts for practical applications.

18.
Adv Mater ; 29(47)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29119629

RESUMO

The direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N2 or O2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g-1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm-2 and 621 F g-1 at 10 mV s-1 for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility.

19.
Nat Commun ; 8(1): 1599, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150596

RESUMO

Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

20.
Adv Sci (Weinh) ; 3(1): 1500205, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27722079

RESUMO

An activated carbon nanofiber (CNF) is prepared with incorporated Fe-N-doped graphene nanoplatelets (Fe@NGnPs), via a novel and simple synthesis approach. The activated CNF-Fe@NGnP catalysts exhibit substantially improved activity for the oxygen reduction reaction compared to those of commercial carbon blacks and Pt/carbon catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA