Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(5): 528-536, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629344

RESUMO

We report the complexation of poly(ethylene glycol) conjugated double-stranded oligoDNA (PEG-(ds)oligoDNA) with imidazolium-based ionic liquids (ILs) to form polyelectrolyte complex aggregates (PCAs). The PEG-(ds)oligoDNA conjugates are prepared following a solution-phase coupling reaction. The binding of PEG-(ds)oligoDNA with either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) or 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) is confirmed by a fluorescence displacement assay. Both ILs show stronger binding affinity to PEG-(ds)oligoDNA than bare (ds)oligoDNA due to the PEG-assisted increase in IL cation concentration in the vicinity of (ds)oligoDNA. The complex morphology formed at various amine (N) to phosphate (P) ratios is also examined. At high N/P ratios above 4, nanosized PCAs are formed, driven by a counterion-mediated attraction among the IL-bound (ds)oligoDNA segments and stabilized by the conjugated PEG segments. The PCAs exhibit near-neutral surface charges and resistance to DNase degradation, suggesting their potential use in gene delivery applications.

2.
JACS Au ; 3(1): 154-164, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711099

RESUMO

Ice-binding proteins (IBPs) produced by psychrophilic organisms to adapt for the survival of psychrophiles in subzero conditions have received illustrious interest as a cryopreservation agent required for cells and tissues to completely recover after freezing/thawing. Depressing water-freezing point and avoiding ice-crystal growth affect their activities which are closely related to the presence of ice crystal well-matched binding moiety. The interaction of IBPs with ice and water is critical in enhancing their freeze avoidance against cell or tissue damage. Metal-organic frameworks (MOFs) with a controllable lattice at the molecular level and a size at the nanometer scale can offer periodically ordered ice-binding sites by modifying organic linkers and controlling microcurvature at the ice surface. Herein, zirconium (Zr)-based MOF-801 nanoparticles (NPs) with good biocompatibility were used as a cryoprotectant that is well dispersed and colloidal-stable in an aqueous solution. The MOF NP size was precisely controlled, and 10, 35, 100, and 250 nm NPs were prepared. The specific IBPs-mimicking pendants (valine and threonine) were simply introduced into the MOF NP-surface through the acrylate-based functionalization to endow with hydrophilic and hydrophobic dualities. When small-sized MOF-801 NPs were attached to ice, they confined ice growth in high curvature between the adsorption sites because of the decreased radius of the convex area of the growth region, leading to highly enhanced ice recrystallization inhibition (IRI). Surface-functionalized MOF NPs could increase the number of anchored clathrate water molecules with hydrophilic/hydrophobic balance of the ice-binding moiety, effectively inhibiting ice growth. The MOF-801 NPs were biocompatible with various cell lines regardless of concentration or NP surface-functionalization, whereas the smaller-sized surface-functionalized NPs showed a good cell recovery rate after freezing/thawing by induction of IRI. This study provides a strategy for the fabrication of low-cost, high-volume antifreeze nanoagents that can extend useful applications to organ transplantation, cord blood storage, and vaccines/drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA