Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471780

RESUMO

Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aß fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Feminino , Camundongos , Masculino , Animais , Regeneração Nervosa/fisiologia , Pele/inervação , Neurogênese , Neurônios Aferentes/fisiologia
2.
J Craniofac Surg ; 35(1): 133-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37973054

RESUMO

OBJECTIVES: This study aimed to evaluate the diagnostic performance of a deep convolutional neural network (DCNN)-based computer-assisted diagnosis (CAD) system to detect facial asymmetry on posteroanterior (PA) cephalograms and compare the results of the DCNN with those made by the orthodontist. MATERIALS AND METHODS: PA cephalograms of 1020 patients with orthodontics were used to train the DCNN-based CAD systems for autoassessment of facial asymmetry, the degree of menton deviation, and the coordinates of its regarding landmarks. Twenty-five PA cephalograms were used to test the performance of the DCNN in analyzing facial asymmetry. The diagnostic performance of the DCNN-based CAD system was assessed using independent t -tests and Bland-Altman plots. RESULTS: Comparison between the DCNN-based CAD system and conventional analysis confirmed no significant differences. Bland-Altman plots showed good agreement for all the measurements. CONCLUSIONS: The DCNN-based CAD system might offer a clinically acceptable diagnostic evaluation of facial asymmetry on PA cephalograms.


Assuntos
Aprendizado Profundo , Humanos , Assimetria Facial/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Diagnóstico por Computador/métodos
3.
Gastric Cancer ; 26(6): 1012-1019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648892

RESUMO

BACKGROUND: Thromboembolic events (TEEs) are significant adverse events that can cause serious morbidities and mortality in cancer patients receiving chemotherapy. Patients with gastric cancer (GC) treated with palliative chemotherapy have been reported to experience a TEE incidence of 5-27%. However, very few reports have addressed TEEs in adjuvant chemotherapy (AC) for GC. METHODS: This study retrospectively analyzed 611 GC patients (stage II: 309, III: 302) who started AC with capecitabine/oxaliplatin (167 patients) or S-1 (444 patients) after undergoing curative resection between January 2013 and June 2020 at a single center. The incidence of TEEs during AC or within 1 year after AC completion was investigated, while analyzing the factors that influenced the TEEs' occurrence. RESULTS: TEEs were confirmed in 20 patients (3.3%), and TEEs occurred in almost all patients in the S-1 group (19 patients). The most common TEE types were cerebral infarction and pulmonary thromboembolism (five patients each). Although old age (≥ 70 years, p < 0.0001), S-1 treatment (p = 0.021), and hypertension (p = 0.017) were identified as significant risk factors for TEEs in univariate analysis, only old age showed a statistically significant correlation with TEEs' occurrence in multivariate analysis (odds ratio: 3.07; 95% confidence interval 1.11-8.48; p = 0.031). CONCLUSIONS: TEEs occurred in fewer patients with GC who had been treated with AC than patients who had received palliative chemotherapy in previous reports. However, elderly GC patients who are undergoing AC require more careful surveillance for possible TEEs, considering relatively higher incidence of them.


Assuntos
Neoplasias Gástricas , Tromboembolia , Humanos , Idoso , Estudos Retrospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/complicações , Tromboembolia/induzido quimicamente , Tromboembolia/epidemiologia , Quimioterapia Adjuvante/efeitos adversos , Oxaliplatina/uso terapêutico
4.
J Neurosci ; 41(26): 5595-5619, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34031166

RESUMO

Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aß slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aß SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation. However, it remains unknown whether this complex plays a role in the mechanical hypersensitivity caused by peripheral nerve injury. In this study, we characterized the distribution of Merkel cells and associated afferent neurons across four diverse domains of mouse hind paw skin, including a recently described patch of plantar hairy skin. We also showed that in the spared nerve injury (SNI) model of neuropathic pain, Merkel cells are lost from the denervated tibial nerve territory but are relatively preserved in nearby hairy skin innervated by the spared sural nerve. Using a genetic Merkel cell KO mouse model, we subsequently examined the importance of intact Merkel cell-Aß complexes to SNI-associated mechanical hypersensitivity in skin innervated by the spared neurons. We found that, in the absence of Merkel cells, mechanical allodynia was partially reduced in male mice, but not female mice, under sural-sparing SNI conditions. Our results suggest that Merkel cell-Aß afferent complexes partially contribute to mechanical allodynia produced by peripheral nerve injury, and that they do so in a sex-dependent manner.SIGNIFICANCE STATEMENT Merkel discs or Merkel cell-Aß afferent complexes are mechanosensory end organs in mammalian skin. Yet, it remains unknown whether Merkel cells or their associated sensory neurons play a role in the mechanical hypersensitivity caused by peripheral nerve injury. We found that male mice genetically lacking Merkel cell-Aß afferent complexes exhibited a reduction in mechanical allodynia after nerve injury. Interestingly, this behavioral phenotype was not observed in mutant female mice. Our study will facilitate understanding of mechanisms underlying neuropathic pain.


Assuntos
Hiperalgesia/fisiopatologia , Células de Merkel/fisiologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/etiologia , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Pele/inervação , Nervo Sural/lesões
5.
Anal Chem ; 92(11): 7382-7387, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32392040

RESUMO

AMP-activated protein kinase (AMPK in human and AAK in C. elegans) is a master regulator of metabolism. It has many isotypes, but its isotype-dependent functions are largely unknown. By developing real-time in-organism NMR metabolomics for C. elegans, we were able to study different roles of the isotypic catalytic subunits of AAK/AMPK, AAK-1, and AAK-2 in live worms at the whole organism level. The aak-1 knockout animals exhibited enhanced glucose production under starvation, strikingly opposite to aak-2 knockout animals. Unusually high compensatory expression of the reciprocal isotypes in each KO strain and the results for the double KO animals suggested an unconventional phenotype-genotype relationship and the dominance of aak-2 in glucose production. The gene expression patterns showed that the differential phenotypes of aak-1 KO strain are due to reduced TCA and glycolysis and enhanced gluconeogenesis compared to the aak-2 KO strain. Subsequent 13C-isotope incorporation experiment showed that the glucose production in aak-1 KO occurs through the activation of fatty acid oxidation and glyoxylate shunt. Revealing differential roles of the isotypes of AAK/AMPK, our convenient approach is readily applicable to many C. elegans models for human metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Animais , Caenorhabditis elegans/enzimologia , Domínio Catalítico , Humanos , Fatores de Tempo
6.
Mol Cancer ; 18(1): 68, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30927911

RESUMO

BACKGROUND: Although the tumor stroma in solid tumors like gastric cancer (GC) plays a crucial role in chemo-resistance, specific targets to inhibit the interaction between the stromal and cancer cells have not yet been utilized in clinical practice. The present study aims to determine whether cancer-associated fibroblasts (CAFs), a major component of the tumor stroma, confer chemotherapeutic resistance to GC cells, and to discover potential targets to improve chemo-response in GC. METHODS: To identify CAF-specific proteins and signal transduction pathways affecting chemo-resistance in GC cells, secretome and transcriptome analyses were performed. We evaluated the inhibiting effect of CAF-specific protein in in vivo and in vitro models and investigated the expression of CAF-specific protein in human GC tissues. RESULTS: Secretome and transcriptome data revealed that interleukin-6 (IL-6) is a CAF-specific secretory protein that protects GC cells via paracrine signaling. Furthermore, CAF-induced activation of the Janus kinase 1-signal transducer and activator of transcription 3 signal transduction pathway confers chemo-resistance in GC cells. CAF-mediated inhibition of chemotherapy-induced apoptosis was abrogated by the anti-IL-6 receptor monoclonal antibody tocilizumab in various experimental models. Clinical data revealed that IL-6 was prominently expressed in the stromal portion of GC tissues, and IL-6 upregulation in GC tissues was correlated with poor responsiveness to chemotherapy. CONCLUSIONS: Our data provide plausible evidence for crosstalk between GC cells and CAFs, wherein IL-6 is a key contributor to chemoresistance. These findings suggest the potential therapeutic application of IL-6 inhibitors to enhance the responsiveness to chemotherapy in GC.


Assuntos
Fibroblastos Associados a Câncer/citologia , Fluoruracila/administração & dosagem , Interleucina-6/genética , RNA Interferente Pequeno/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Cancer ; 144(7): 1530-1539, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229901

RESUMO

Preclinical data suggested that dipeptidyl peptidase-4 (DPP-4) inhibitors may promote metastatic progression of preexisting cancer via nuclear factor erythroid 2-related factor 2 (NRF2) activation. We aimed to investigate the association between different glucose-lowering treatments, including DPP-4 inhibitors and metformin, both with potential NRF2 modulating effects, and new-onset metastatic cancer among type 2 diabetes patients with comorbid incident cancer. This population-based cohort study included 223,530 diabetic patients newly diagnosed with primary cancer during 2009-2011 in Korea. The patients were categorized into five study cohorts in accordance with treatment modalities during the follow-up until the end of 2016: no-antidiabetic drugs (no-AD), metformin, DPP-4 inhibitors, metformin+DPP-4 inhibitors, and insulin treatment. After propensity score (PS) matching in a 1:1 ratio against the no-AD group, 18,805 patients in metformin, 1,865 in DPP-4 inhibitors, 31,074 in metformin+DPP-4 inhibitors, and 1,895 patients in insulin groups were identified for cohort entry and analyzed against the corresponding number of no-AD patients in each PS-matched comparison pair. Metastatic risk was lower with metformin plus or minus DPP-4 inhibitors (HR 0.84, 95% CI 0.79-0.90 and 0.87, 0.80-0.95, respectively), not significantly associated with DPP-4 inhibitors (0.99, 0.77-1.29) except after thyroid cancer (3.89, 1.01-9.64), and higher with insulin therapy (1.81, 1.46-2.24) compared to no-AD use for all cancers combined. In conclusion, DPP-4 inhibitor therapy was not associated with significant risk of cancer metastasis relative to no-AD therapy, irrespective of patient age and sex, except after thyroid cancer, while metastatic risk was decreased with metformin treatment among type 2 diabetes patients with preexisting cancer.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/uso terapêutico , Neoplasias da Glândula Tireoide/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Comorbidade , Feminino , Humanos , Insulina/uso terapêutico , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Metástase Neoplásica , Pontuação de Propensão , República da Coreia , Adulto Jovem
8.
Nature ; 485(7400): 661-5, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22660331

RESUMO

Overcoming metabolic stress is a critical step for solid tumour growth. However, the underlying mechanisms of cell death and survival under metabolic stress are not well understood. A key signalling pathway involved in metabolic adaptation is the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Energy stress conditions that decrease intracellular ATP levels below a certain level promote AMPK activation by LKB1. Previous studies showed that LKB1-deficient or AMPK-deficient cells are resistant to oncogenic transformation and tumorigenesis, possibly because of the function of AMPK in metabolic adaptation. However, the mechanisms by which AMPK promotes metabolic adaptation in tumour cells are not fully understood. Here we show that AMPK activation, during energy stress, prolongs cell survival by redox regulation. Under these conditions, NADPH generation by the pentose phosphate pathway is impaired, but AMPK induces alternative routes to maintain NADPH and inhibit cell death. The inhibition of the acetyl-CoA carboxylases ACC1 and ACC2 by AMPK maintains NADPH levels by decreasing NADPH consumption in fatty-acid synthesis and increasing NADPH generation by means of fatty-acid oxidation. Knockdown of either ACC1 or ACC2 compensates for AMPK activation and facilitates anchorage-independent growth and solid tumour formation in vivo, whereas the activation of ACC1 or ACC2 attenuates these processes. Thus AMPK, in addition to its function in ATP homeostasis, has a key function in NADPH maintenance, which is critical for cancer cell survival under energy stress conditions, such as glucose limitations, anchorage-independent growth and solid tumour formation in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Homeostase , NADP/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Animais , Células CHO , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica , Inibição de Contato , Cricetinae , Ativação Enzimática , Feminino , Glucose/deficiência , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Nus , NADP/deficiência , Oxirredução , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Neuron ; 112(8): 1200-1202, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636452

RESUMO

In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.


Assuntos
Células de Merkel , Neurônios , Animais , Neurônios/metabolismo , Prótons , Neuritos/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/metabolismo , Mamíferos/metabolismo
10.
Autophagy ; : 1-21, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38953310

RESUMO

Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.

11.
Exp Mol Med ; 55(10): 2238-2247, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779146

RESUMO

Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.


Assuntos
Histonas , Ácido Láctico , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilação , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Epigênese Genética
12.
Exp Mol Med ; 55(2): 333-346, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36720915

RESUMO

The Arg/N-degron pathway, which is involved in the degradation of proteins bearing an N-terminal signal peptide, is connected to p62/SQSTM1-mediated autophagy. However, the impact of the molecular link between the N-degron and autophagy pathways is largely unknown in the context of systemic inflammation. Here, we show that chemical mimetics of the N-degron Nt-Arg pathway (p62 ligands) decreased mortality in sepsis and inhibited pathological inflammation by activating mitophagy and immunometabolic remodeling. The p62 ligands alleviated systemic inflammation in a mouse model of lipopolysaccharide (LPS)-induced septic shock and in the cecal ligation and puncture model of sepsis. In macrophages, the p62 ligand attenuated the production of proinflammatory cytokines and chemokines in response to various innate immune stimuli. Mechanistically, the p62 ligand augmented LPS-induced mitophagy and inhibited the production of mitochondrial reactive oxygen species in macrophages. The p62 ligand-mediated anti-inflammatory, antioxidative, and mitophagy-activating effects depended on p62. In parallel, the p62 ligand significantly downregulated the LPS-induced upregulation of aerobic glycolysis and lactate production. Together, our findings demonstrate that p62 ligands play a critical role in the regulation of inflammatory responses by orchestrating mitophagy and immunometabolic remodeling.


Assuntos
Mitofagia , Sepse , Animais , Camundongos , Ligantes , Lipopolissacarídeos/farmacologia , Autofagia , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico
13.
J Neurochem ; 121(5): 751-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22404335

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognition. One of the hallmarks of AD is the accumulation of beta-amyloid (Aß). Although endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress have been implicated in Aß toxicity, the molecular mechanism(s) of Aß-induced neurotoxicity are not fully understood. In this study, we present evidence that the glia-derived stress protein metallothionein (MT) attenuates Aß-induced neurotoxicity by unique mechanisms. MT expression was increased in brain astrocytes of a NSE-APPsw transgenic mouse model of AD. Astrocyte-derived MT protected N2a neuroblastoma cells and primary cortical neurons against Aß toxicity with concurrent reduction of reactive oxygen species levels. MT reversed Aß-induced down-regulation of Bcl-2 and survival signaling in neuroblastoma cells. Moreover, MT inhibited Aß-induced proinflammatory cytokine production from microglia. The neurotoxicity of Aß-stimulated microglia was significantly attenuated by MT-I. The results indicate that MT released from reactive astrocytes may antagonize Aß neurotoxicity by direct inhibition of Aß neurotoxicity and indirect suppression of neurotoxic microglial activation. These findings broaden the understanding of neurotoxic mechanisms of Aß and the crosstalk between Aß and MT in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Metalotioneína/metabolismo , Microglia/metabolismo , Animais , Fragmentação do DNA , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Pain ; 163(8): 1497-1510, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784311

RESUMO

ABSTRACT: Chronic joint pain is a major symptom in rheumatoid arthritis (RA) and its adequate treatment represents an unmet medical need. Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of RA as negative regulators of specific target mRNAs. Yet, their significance in RA pain is still not well defined. We and other groups recently identified neuronally expressed FcγRI as a key driver of arthritis pain in mouse RA models. Thus, we tested the hypothesis that miRNAs that target and regulate neuronal FcγRI attenuate RA pain. Here, we show that miR-544-3p was robustly downregulated, whereas FcγRI was significantly upregulated in the dorsal root ganglion (DRG) in mouse RA models. Intrathecal injection of miR-544-3p mimic attenuated established mechanical and heat hyperalgesia partly through the downregulation of FcγRI in the DRG in a mouse model of collagen II-induced arthritis. Moreover, this effect was likely mediated, at least in part, by FcγRI because miR-544-3p mimic downregulated Fcgr1 mRNA expression in the DRG during arthritis and genetic deletion of Fcgr1 produced similar antihyperalgesic effects in the collagen II-induced arthritis model. This notion was further supported by a dual luciferase assay showing that miR-544-3p directly targeted Fcgr1 3'UTR. In naïve mice, miR-544-3p mediated acute joint pain hypersensitivity induced by IgG immune complex through the regulation of FcγRI. These findings suggest that miR-544-3p causally participates in the maintenance of arthritis pain by targeting neuronal FcγRI, and thus define miR-544-3p as a new potential therapeutic target for treating RA pain.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Receptores de IgG , Animais , Artralgia , Artrite Experimental/genética , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Colágeno , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo
15.
Nat Commun ; 13(1): 899, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173161

RESUMO

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Assuntos
Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hexoquinase/metabolismo , Neoplasias/patologia , Proteínas de Ancoragem à Quinase A/metabolismo , Células A549 , Animais , Células CHO , Carcinogênese/patologia , Linhagem Celular Tumoral , Cricetulus , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Desoxiglucose/farmacologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicosilação , Células HCT116 , Células HEK293 , Hexoquinase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica/patologia , Fosforilação/efeitos dos fármacos , Ratos , Fatores de Transcrição da Família Snail/metabolismo
16.
Virulence ; 13(1): 1966-1984, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271707

RESUMO

Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Camundongos , Animais , Peixe-Zebra , Infecções por Mycobacterium não Tuberculosas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Macrófagos/microbiologia
17.
Gut Microbes ; 14(1): 2073132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579969

RESUMO

Nontuberculous mycobacterial pulmonary diseases (NTM-PDs) are emerging as global health threats with issues of antibiotic resistance. Accumulating evidence suggests that the gut-lung axis may provide novel candidates for host-directed therapeutics against various infectious diseases. However, little is known about the gut-lung axis in the context of host protective immunity to identify new therapeutics for NTM-PDs. This study was performed to identify gut microbes and metabolites capable of conferring pulmonary immunity to NTM-PDs. Using metabolomics analysis of sera from NTM-PD patients and mouse models, we showed that the levels of l-arginine were decreased in sera from NTM-PD patients and NTM-infected mice. Oral administration of l-arginine significantly enhanced pulmonary antimicrobial activities with the expansion of IFN-γ-producing effector T cells and a shift to microbicidal (M1) macrophages in the lungs of NTM-PD model mice. Mice that received fecal microbiota transplants from l-arginine-treated mice showed increased protective host defense in the lungs against NTM-PD, whereas l-arginine-induced pulmonary host defense was attenuated in mice treated with antibiotics. Using 16S rRNA sequencing, we further showed that l-arginine administration resulted in enrichment of the gut microbiota composition with Bifidobacterium species. Notably, oral treatment with either Bifidobacterium pseudolongum or inosine enhanced antimicrobial pulmonary immune defense against NTM infection, even with multidrug-resistant clinical NTM strains. Our findings indicate that l-arginine-induced gut microbiota remodeling with enrichment of B. pseudolongum boosts pulmonary immune defense against NTM infection by driving the protective gut-lung axis in vivo.


Assuntos
Microbioma Gastrointestinal , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Arginina , Humanos , Pulmão , Camundongos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , RNA Ribossômico 16S
18.
Autophagy ; 18(12): 2926-2945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35316156

RESUMO

The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.


Assuntos
Autofagia , Macroautofagia , Animais , Camundongos , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Vacina BCG , Ubiquitina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Salmonella typhimurium/metabolismo , Citocinas/metabolismo , Sirolimo/farmacologia
19.
J Hematol Oncol ; 15(1): 156, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289517

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor clinical outcomes. Emerging data suggest that mitochondrial oxidative phosphorylation (mtOXPHOS) plays a significant role in AML tumorigenesis, progression, and resistance to chemotherapies. However, how the mtOXPHOS is regulated in AML cells is not well understood. In this study, we investigated the oncogenic functions of ERRα in AML by combining in silico, in vitro, and in vivo analyses and showed ERRα is a key regulator of mtOXPHOS in AML cells. The increased ERRα level was associated with worse clinical outcomes of AML patients. Single cell RNA-Seq analysis of human primary AML cells indicated that ERRα-expressing cancer cells had significantly higher mtOXPHOS enrichment scores. Blockade of ERRα by pharmacologic inhibitor (XCT-790) or gene silencing suppressed mtOXPHOS and increased anti-leukemic effects in vitro and in xenograft mouse models.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Fosforilação Oxidativa , Apoptose , Mitocôndrias/metabolismo , Leucemia Mieloide Aguda/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Receptor ERRalfa Relacionado ao Estrogênio
20.
Clin Cancer Res ; 27(3): 877-888, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33077574

RESUMO

PURPOSE: Stabilization of the transcription factor NRF2 through genomic alterations in KEAP1 and NFE2L2 occurs in a quarter of patients with lung adenocarcinoma and a third of patients with lung squamous cell carcinoma. In lung adenocarcinoma, KEAP1 loss often co-occurs with STK11 loss and KRAS-activating alterations. Despite its prevalence, the impact of NRF2 activation on tumor progression and patient outcomes is not fully defined. EXPERIMENTAL DESIGN: We model NRF2 activation, STK11 loss, and KRAS activation in vivo using novel genetically engineered mouse models. Furthermore, we derive a NRF2 activation signature from human non-small cell lung tumors that we use to dissect how these genomic events impact outcomes and immune contexture of participants in the OAK and IMpower131 immunotherapy trials. RESULTS: Our in vivo data reveal roles for NRF2 activation in (i) promoting rapid-onset, multifocal intrabronchiolar carcinomas, leading to lethal pulmonary dysfunction, and (ii) decreasing elevated redox stress in KRAS-mutant, STK11-null tumors. In patients with nonsquamous tumors, the NRF2 signature is negatively prognostic independently of STK11 loss. Patients with lung squamous cell carcinoma with low NRF2 signature survive longer when receiving anti-PD-L1 treatment. CONCLUSIONS: Our in vivo modeling establishes NRF2 activation as a critical oncogenic driver, cooperating with STK11 loss and KRAS activation to promote aggressive lung adenocarcinoma. In patients, oncogenic events alter the tumor immune contexture, possibly having an impact on treatment responses. Importantly, patients with NRF2-activated nonsquamous or squamous tumors have poor prognosis and show limited response to anti-PD-L1 treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA