Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Neurosci ; 5(6): 546-51, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992116

RESUMO

The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.


Assuntos
Capsaicina/análogos & derivados , Etanol/farmacologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Receptores de Droga/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Temperatura Alta , Humanos , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Concentração Osmolar , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Limiar Sensorial/efeitos dos fármacos , Substância P/metabolismo , Canais de Cátion TRPV , Termorreceptores/efeitos dos fármacos , Termorreceptores/fisiologia , Gânglio Trigeminal/citologia , Gânglio Trigeminal/efeitos dos fármacos
2.
Trends Pharmacol Sci ; 16(12): 413-7, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8578614

RESUMO

Pharmacologists are often required to analyse nonlinear experimental effects by fitting the data to defined theoretical models. This may require a specialized computer program capable of performing nonlinear regression analysis, which can prove costly given the variety of pharmacological research. Here, Wayne Bowen and Jeff Jerman describe a generic method of performing nonlinear regression using spreadsheet applications, and demonstrate how this approach can be used to create automated systems of data analysis.


Assuntos
Modelos Teóricos , Estatística como Assunto/normas , Algoritmos , Sistemas de Informação , Farmacologia , Análise de Regressão
3.
Neuropharmacology ; 46(1): 133-49, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14654105

RESUMO

Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.


Assuntos
Anilidas/farmacologia , Capsaicina/análogos & derivados , Cinamatos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Potenciais da Membrana/efeitos dos fármacos , Receptores de Droga/antagonistas & inibidores , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Ácidos/farmacologia , Anilidas/química , Compostos de Anilina/metabolismo , Animais , Cálcio/metabolismo , Capsaicina/farmacologia , Proteínas de Transporte/farmacologia , Linhagem Celular , Cinamatos/química , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Temperatura Alta , Humanos , Rim , N-Metilaspartato/farmacologia , Neuropeptídeos/farmacologia , Norepinefrina/farmacologia , Orexinas , Técnicas de Patch-Clamp/métodos , Ligação Proteica/efeitos dos fármacos , Ensaio Radioligante/métodos , Ratos , Receptores de Droga/química , Agonistas do Receptor de Serotonina/farmacologia , Xantenos/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
4.
Neuroscience ; 121(4): 855-63, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14580935

RESUMO

Orexins (OXs) regulate sleep with possible interactions with brain noradrenergic neurons. In addition, noradrenergic activity affects barbiturate anesthesia. As we have also recently reported that OXs selectively evoke norepinephrine release from rat cerebrocortical slices we hypothesized that barbiturate anesthesia may result from of an interaction with central orexinergic systems. To test this hypothesis, we performed a series of in vivo and in vitro studies in rats. In vivo, the effects of i.c.v. OX A, B and SB-334867-A (OX1 receptor antagonist) on pentobarbital, thiopental or phenobarbital-induced anesthesia times (loss of righting reflex) was assessed. In vitro effects of barbiturates and SB-334867-A on OX-evoked norepinephrine release from cerebrocortical slice was examined. In Chinese hamster ovary cells expressing human OX1/OX2 receptors OX A- and B-evoked increases in intracellular Ca2+ were measured with and without barbiturates. OX A and B significantly decreased pentobarbital, thiopental and phenobarbital anesthesia times by 15-40%. SB-334867-A increased thiopental-induced anesthesia time by approximately by 40%, and reversed the decrease produced by OX A. In vitro, all anesthetic barbiturates inhibited OX-evoked norepinephrine release with clinically relevant IC50 values. A GABAA antagonist, bicuculline, did not modify the inhibitory effects of thiopental and the GABAA agonist, muscimol, did not inhibit norepinephrine release. In addition there was no interaction of barbiturates with either OX1 or OX2 receptors. Collectively our data suggest that orexinergic neurons may be an important target for barbiturates, and GABAA, OX1 and OX2 receptors may not be involved in this interaction.


Assuntos
Barbitúricos/farmacologia , Encéfalo/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Norepinefrina/metabolismo , Ureia/análogos & derivados , Animais , Benzoxazóis/farmacologia , Encéfalo/citologia , Encéfalo/metabolismo , Células CHO , Proteínas de Transporte/antagonistas & inibidores , Cricetinae , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Técnicas In Vitro , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Naftiridinas , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/antagonistas & inibidores , Receptores de Orexina , Orexinas , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G , Receptores de GABA-A/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Ureia/farmacologia
5.
Br J Pharmacol ; 129(7): 1289-91, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742282

RESUMO

The pharmacology of the orexin-like peptides, hypocretin-1 and hypocretin-2, was studied in Chinese hamster ovary (CHO) cells stably expressing orexin-1 (OX(1)) or orexin-2 (OX(2)) receptors by measuring intracellular calcium ([Ca(2+)](i)) using Fluo-3AM. Orexin-A and orexin-B increased [Ca(2+)](i) in CHO-OX(1) (pEC(50)=7. 99+/-0.05 and 7.00+/-0.10 respectively, n=8) and CHO-OX(2) (pEC(50)=8.30+/-0.05 and 8.21+/-0.07 respectively, n=5). However, hypocretin-1 and hypocretin-2 were markedly less potent, with pEC(50) values of 5.31+/-0.04 and 5.41+/-0.04 respectively in CHO-OX(2) cells (n=5). In CHO-OX(1) cells 10 microM hypocretin-1 only elicited a 37.5+/-3.4% response whilst 10 microM hypocretin-2 elicited a 18.0+/-2.1% response (n=8). Desensitisation of OX(1) or OX(2) with orexin-A (100 nM) abolished the response to orexin-A (10 nM) and the hypocretins (10 microM), but not to UTP (3 microM). In conclusion, the hypocretins are only weak agonists at the orexin receptors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neurotransmissores/farmacologia , Receptores de Neuropeptídeos/agonistas , Compostos de Anilina , Animais , Células CHO , Cálcio/metabolismo , Proteínas de Transporte/farmacologia , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Neuropeptídeos/farmacologia , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xantenos
6.
Br J Pharmacol ; 130(4): 916-22, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10864900

RESUMO

The vanilloid receptor (VR1) is a ligand-gated ion channel, which plays an important role in nociceptive processing. Therefore, a pharmacological characterization of the recently cloned rat VR1 (rVR1) was undertaken. HEK293 cells stable expressing rVR1 (rVR1-HEK293) were loaded with Fluo-3AM and then incubated at 25 degrees C for 30 min with or without various antagonists or signal transduction modifying agents. Then intracellular calcium concentrations ([Ca(2+)](i)) were monitored using FLIPR, before and after the addition of various agonists. The rank order of potency of agonists (resiniferatoxin (RTX)>capsaicin>olvanil>PPAHV) was as expected, and all were full agonists. The potencies of capsaicin and olvanil, but not RTX or PPAHV, were enhanced at pH 6.4 (pEC(50) values of 7.47+/-0.06, 7.16+/-0.06, 8.19+/-0.06 and 6.02+/-0.03 respectively at pH 7.4 vs 7.71+/-0.05, 7.58+/-0.14, 8.10+/-0.05 and 6.04+/-0.08 at pH 6.4). Capsazepine, isovelleral and ruthenium red all inhibited the capsaicin (100 nM)-induced Ca(2+) response in rVR1-HEK293 cells, with pK(B) values of 7.52+/-0.08, 6.92+/-0.11 and 8.09+/-0.12 respectively (n=6 each). The response to RTX and olvanil were also inhibited by these compounds. None displayed any agonist-like activity. The removal of extracellular Ca(2+) abolished, whilst inhibition of protein kinase C with chelerythrine chloride (10 microM) partially (approximately 20%) inhibited, the capsaicin (10 microM)-induced Ca(2+) response. However, tetrodotoxin (3 microM), nimodipine (10 microM), omega-GVIA conotoxin (1 microM), thapsigargin (1 microM), U73122 (3 microM) or H-89 (3 microM) had no effect on the capsaicin (100 nM)-induced response. In conclusion, the recombinant rVR1 stably expressed in HEK293 cells acts as a ligand-gated Ca(2+) channel with the appropriate agonist and antagonist pharmacology, and therefore is a suitable model for studying the effects of drugs at this receptor.


Assuntos
Fluorometria/métodos , Receptores de Droga/agonistas , Receptores de Droga/antagonistas & inibidores , Animais , Cálcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Linhagem Celular , DNA Recombinante/genética , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Ésteres de Forbol/farmacologia , Sesquiterpenos Policíclicos , Ratos , Receptores de Droga/genética , Rutênio Vermelho/farmacologia , Sesquiterpenos/farmacologia , Transfecção
7.
Br J Pharmacol ; 121(8): 1687-91, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9283704

RESUMO

1. SB-204269 (trans-(+)-6-acetyl-4S-(4-fluorobenzoylamino)-3, 4-dihydro-2,2-dimethyl-2H-benzol[b]pyran-3R-ol, hemihydrate) shows potent anticonvulsant activity in a range of animal seizure models, with a lack of neurological or cardiovascular side-effects. The profile of the compound suggests that it may have a novel mechanism of action. This study describes the characteristics of a binding site for [3H]-SB-204269 in rat forebrain membranes. 2. Specific [3H]-SB-204269 binding was saturable and analysis indicated binding to a homogenoeous population of non-interacting binding sites with a dissociation constant (KD) of 32 +/- 1 nM and a maximum binding capacity (Bmax) of 253 +/- 18 fmol mg-1 protein. Kinetic studies indicated monophasic association and dissociation. Binding was similar in HEPES or Tris-HCl buffers and was unaffected by Na+, K+, Ca2+ or Mg2+ ions. Specific binding was widely distributed in brain, but was minimal in a range of peripheral tissues. 3. Specific [3H]-SB-204269 binding was highly stereoselective, with a 1000 fold difference between the affinities of SB-204269 and its enantiomer SB-204268 for the binding site. The affinities of analogues of SB-204269 for binding can be related to their activities in the mouse maximal electroshock seizure threshold (MEST) test of anticonvulsant action. 4. None of the standard anticonvulsant drugs, phenobarbitone, phenytoin, sodium valproate, carbamazepine, diazepam and ethosuximide, or the newer anticonvulsants, lamotrigine, vigabatrin, gabapentin and levetiracetam, showed any affinity for the [3H]-SB-204269 binding site. A wide range of drugs active at amino acid receptors, Na+ or K+ channels or various other receptors did not demonstrate any affinity for the binding site. 5. These studies indicate that SB-204269 possesses a specific CNS binding site which may mediate its anticonvulsant activity. This binding site does not appear to be directly related to the sites of action of other known anticonvulsant agents, but may have an important role in regulating neuronal excitability.


Assuntos
Anticonvulsivantes/metabolismo , Benzamidas/metabolismo , Benzopiranos/metabolismo , Encéfalo/metabolismo , Animais , Sítios de Ligação , Cinética , Masculino , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Trítio
8.
Br J Pharmacol ; 132(6): 1179-82, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11250867

RESUMO

The pharmacology of various peptide and non-peptide ligands was studied in Chinese hamster ovary (CHO) cells stably expressing human orexin-1 (OX(1)) or orexin-2 (OX(2)) receptors by measuring intracellular calcium ([Ca(2+)](i)) using Fluo-3AM. Orexin-A and orexin-B increased [Ca(2+)](i) in CHO-OX(1) (pEC(50)=8.38+/-0.04 and 7.26+/-0.05 respectively, n=12) and CHO-OX(2) (pEC(50)=8.20+/-0.03 and 8.26+/-0.04 respectively, n=8) cells. However, neuropeptide Y and secretin (10 pM - 10 microM) displayed neither agonist nor antagonist properties in either cell-line. SB-334867-A (1-(2-Methyylbenzoxanzol-6-yl)-3-[1,5]naphthyridin-4-yl-urea hydrochloride) inhibited the orexin-A (10 nM) and orexin-B (100 nM)-induced calcium responses (pK(B)=7.27+/-0.04 and 7.23+/-0.03 respectively, n=8), but had no effect on the UTP (3 microM)-induced calcium response in CHO-OX(1) cells. SB-334867-A (10 microM) also inhibited OX(2) mediated calcium responses (32.7+/-1.9% versus orexin-A). SB-334867-A was devoid of agonist properties in either cell-line. In conclusion, SB-334867-A is a non-peptide OX(1) selective receptor antagonist.


Assuntos
Benzoxazóis/farmacologia , Receptores de Neuropeptídeos/antagonistas & inibidores , Ureia/farmacologia , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Fluorometria , Humanos , Naftiridinas , Receptores de Orexina , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transfecção , Ureia/análogos & derivados
9.
Br J Pharmacol ; 129(2): 227-30, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10694225

RESUMO

The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 microM) and capsaicin (1 microM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 microM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC(50) values of 5. 94+/-0.06 (n=5) and 7.13+/-0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pK(B) of 7.40+/-0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1.


Assuntos
Ácidos Araquidônicos/farmacologia , Canabinoides/farmacologia , Receptores de Droga/efeitos dos fármacos , Amidas , Ligação Competitiva/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Capsaicina/farmacologia , Linhagem Celular , Clonagem Molecular , Eletrofisiologia , Endocanabinoides , Etanolaminas , Humanos , Concentração de Íons de Hidrogênio , Ácidos Palmíticos/farmacologia , Técnicas de Patch-Clamp , Alcamidas Poli-Insaturadas , Proteínas Recombinantes/química , Canais de Cátion TRPV
10.
Br J Pharmacol ; 128(3): 627-36, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10516642

RESUMO

1. A functional tachykinin NK3 receptor was cloned from the rabbit iris sphincter muscle and its distribution investigated in ocular tissues. 2. Standard polymerase chain reaction (PCR) techniques were used to clone a full length rabbit NK3 receptor cDNA consisting of 1404 nucleotides. This cDNA encoded a protein of 467 amino acids with 91 and 87% homology to the human and rat NK3 receptors respectively. 3. In CHO-K1 cells transiently expressing the recombinant rabbit NK3 receptor, the relative order of potency of NKB>>NKA>/=SP to displace [125I]-[MePhe7]-NKB binding and to increase intracellular calcium, together with the high affinity of NK3 selective agonists (e.g. senktide, [MePhe7]-NKB) and antagonists (e.g. SR 142801, SB 223412) in both assays was consistent with NK3 receptor pharmacology. In binding and functional experiments, agonist concentration response curves were shallow (0.7 - 0.8), suggesting the possibility of multiple affinity states of the receptor. 4. Quantitative real time PCR analysis revealed highest expression of rabbit NK3 receptor mRNA in iris sphincter muscle, lower expression in retina and iris dilator muscle, and no expression in lens and cornea. In situ hybridization histochemistry revealed discrete specific localization of NK3 receptor mRNA in the iris muscle and associated ciliary processes. Discrete specific labelling of NK3 receptors with the selective NK3 receptor agonist [125I]-[MePhe7]-NKB was also observed in the ciliary processes using autoradiography. 5. Our study reveals a high molecular similarity between rabbit and human NK3 receptor mRNAs, as predicted from previous pharmacological studies, and provide the first evidence that NK3 receptors are precisely located on ciliary processes in the rabbit eye. In addition, there could be two affinity states of the receptor which may correspond to the typical and 'atypical' NK3 receptor subtypes previously reported.


Assuntos
Iris/metabolismo , Músculo Liso/metabolismo , Receptores da Neurocinina-3/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Autorradiografia , Sequência de Bases , Células CHO , Clonagem Molecular , Cricetinae , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , Coelhos , Ensaio Radioligante , Ratos , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/fisiologia , Homologia de Sequência de Aminoácidos
11.
Br J Pharmacol ; 128(1): 1-3, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10498827

RESUMO

The cellular mechanisms underlying the physiological effects of the orexins are poorly understood. Therefore, the pharmacology of the recombinant human orexin receptors was studied using FLIPR. Intracellular calcium ([Ca2+]i) was monitored in Chinese hamster ovary (CHO) cells stably expressing orexin-1 (OX1) or orexin-2 (OX2) receptors using Fluo-3AM. Orexin-A and orexin-B increased [Ca2+]i in a concentration dependent manner in CHO-OX1 (pEC50=8.03+/-0.08 and 7. 30+/-0.08 respectively, n=5) and CHO-OX2 (pEC50=8.18+/-0.10 and 8. 43+/-0.09 respectively, n=5) cells. This response was typified as a rapid peak in [Ca2+]i (maximal at 6 - 8 s), followed by a gradually declining secondary phase. Thapsigargin (3 microM) or U73122 (3 microM) abolished the response. In calcium-free conditions the peak response was unaffected but the secondary phase was shortened, returning to basal values within 90 s. Calcium (1.5 mM) replacement restored the secondary phase. In conclusion, orexins cause a phospholipase C-mediated release of calcium from intracellular stores, with subsequent calcium influx.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/metabolismo , Compostos de Anilina , Animais , Células CHO , Cálcio/antagonistas & inibidores , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Cricetinae , Relação Dose-Resposta a Droga , Corantes Fluorescentes , Humanos , Neuropeptídeos/antagonistas & inibidores , Receptores de Orexina , Orexinas , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tapsigargina/farmacologia , Fatores de Tempo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Xantenos
12.
Eur J Pharmacol ; 409(3): 259-63, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11108819

RESUMO

Bombesin and its receptors have been shown to have a role regulating circadian rhythms in the hamster suprachiasmatic and dorsal raphe nuclei and have been implicated in the regulation of sleep. We have identified and characterised a bombesin receptor endogenously expressed in a Chinese hamster ovary cell line (CHO/DG44). Using a range of bombesin-like peptides, we demonstrate that this receptor displays bombesin BB2 receptor-like pharmacology. We also show that this receptor signals through inositol-[1,4,5]-trisphosphate and protein kinase C and thus provides a useful model system to aid in the interpretation of hamster suprachiasmatic nucleus studies of mammalian circadian rhythm.


Assuntos
Bombesina/farmacologia , Células CHO/efeitos dos fármacos , Receptores da Bombesina/efeitos dos fármacos , Animais , Células CHO/metabolismo , Cricetinae , Receptores da Bombesina/metabolismo
13.
Eur J Pharmacol ; 424(3): 211-9, 2001 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-11672565

RESUMO

The effects of three structurally related cannabinoids on human and rat recombinant vanilloid VR1 receptors expressed in human embryonic kidney (HEK293) cells and at endogenous vanilloid receptors in the rat isolated mesenteric arterial bed were studied. In the recombinant cells, all three were full agonists, causing concentration-dependent increases in [Ca(2+)](i) (FLIPR), with a rank order of potency relative to the vanilloids capsaicin and olvanil, of olvanil> or =capsaicin>AM404 ((allZ)-N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide)>anandamide>methanandamide. These responses were inhibited by the vanilloid VR1 receptor antagonist, capsazepine. In the mesenteric arterial bed, vasorelaxation was evoked by these ligands with a similar order of potency. The AM404-induced vasorelaxation was virtually abolished by capsaicin pretreatment. AM404 inhibition of capsaicin-sensitive sensory neurotransmission was blocked by ruthenium red, but not by cannabinoid CB(1) and CB(2) receptor antagonists. AM404 had no effect on relaxations to calcitonin gene-related peptide. These data demonstrate that the vasorelaxant and sensory neuromodulator properties of AM404 in the rat isolated mesenteric arterial bed are mediated by vanilloid VR1 receptors.


Assuntos
Canabinoides/farmacologia , Capsaicina/análogos & derivados , Receptor CB2 de Canabinoide , Receptores de Droga/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Benzofuranos/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canfanos/farmacologia , Capsaicina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Endocanabinoides , Humanos , Técnicas In Vitro , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/inervação , Artérias Mesentéricas/fisiologia , Neurônios Aferentes/fisiologia , Alcamidas Poli-Insaturadas , Pirazóis/farmacologia , Ratos , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Receptores de Droga/genética , Receptores de Droga/fisiologia , Rutênio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
Eur J Pharmacol ; 414(1): 23-30, 2001 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-11230991

RESUMO

Prompted by conflicting literature, this study compared the pharmacology of human 5-hydroxytryptamine2 (5-HT2) receptors expressed in SH-SY5Y cells using a fluorometric imaging plate reader (FLIPR) based Ca2+ assay. 5-Hydroxytryptamine (5-HT) increased intracellular calcium concentration ([Ca2+]i) at 5-HT2A, 5-HT2B and 5-HT2C receptors (pEC(50)=7.73+/-0.03, 8.86+/-0.04 and 7.99+/-0.04, respectively) and these responses were inhibited by mesulergine (pKB=7.42+/-0.06, 8.77+/-0.10 and 9.52+/-0.11). A range of selective agonists and antagonists displayed the expected pharmacology at each receptor subtype. Sodium butyrate pretreatment increased receptor expression in SH-SY5Y/5-HT2B (15-fold) and SH-SY5Y/5-HT2C cells (7-fold) and increased agonist potencies and relative efficacies. In contrast, sodium butyrate pretreatment of SH-SY5Y/5-HT(2A) cells did not affect receptor expression. The present study provides a direct comparison of agonist and antagonist pharmacology at 5-HT(2) receptor subtypes in a homogenous system and confirms that agonist potency and efficacy varies with the level of receptor expression.


Assuntos
Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Butiratos/farmacologia , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Receptor 5-HT2A de Serotonina , Receptor 5-HT2B de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/efeitos dos fármacos
15.
Eur J Pharmacol ; 417(1-2): 51-8, 2001 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11301059

RESUMO

A full pharmacological characterisation of the recently cloned human vanilloid VR1 receptor was undertaken. In whole-cell patch clamp studies, capsaicin (10 microM) elicited a slowly activating/deactivating inward current in human embryonic kidney (HEK293) cells stably expressing human vanilloid VR1 receptor, which exhibited pronounced outward rectification (reversal potential -2.1+/-0.2 mV) and was abolished by capsazepine (10 microM). In FLIPR-based Ca(2+) imaging studies the rank order of potency was resiniferatoxin>olvanil>capsaicin>anandamide, and all were full agonists. Isovelleral and scutigeral were inactive (1 nM-30 microM). The potencies of capsaicin, olvanil and resiniferatoxin, but not anandamide, were enhanced 2- to 7-fold at pH 6.4. Capsazepine, isovelleral and ruthenium red inhibited the capsaicin (100 nM)-induced Ca(2+) response (pK(B)=6.58+/-0.02, 5.33+/-0.03 and 7.64+/-0.03, respectively). In conclusion, the recombinant human vanilloid VR1 receptor stably expressed in HEK293 cells acted as a ligand-gated, Ca(2+)-permeable channel with similar agonist and antagonist pharmacology to rat vanilloid VR1 receptor, although there were some subtle differences.


Assuntos
Capsaicina/análogos & derivados , Fluorometria/métodos , Receptores de Droga/fisiologia , Alcaloides , Compostos de Anilina , Ácidos Araquidônicos/farmacologia , Benzofenantridinas , Cálcio/metabolismo , Capsaicina/farmacologia , Linhagem Celular , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Fenantridinas/farmacologia , Sesquiterpenos Policíclicos , Alcamidas Poli-Insaturadas , Proteína Quinase C/antagonistas & inibidores , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/genética , Rutênio Vermelho/farmacologia , Sesquiterpenos/farmacologia , Fatores de Tempo , Xantenos
16.
Auton Neurosci ; 88(1-2): 36-44, 2001 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11474544

RESUMO

The effect of low pH on capsaicin-sensitive sensory neurotransmission in the rat isolated mesenteric arterial bed and at recombinant (rVR1) vanilloid receptors was investigated. Mesenteric sensory neurogenic vasorelaxation elicited by electrical field stimulation was reversibly inhibited by lowering pH from 7.4 to 6.9 and 6.3. Capsaicin-induced vasorelaxation was not different at pH 6.9, but was attenuated at pH 6.3. Vasorelaxation to calcitonin gene-related peptide, the principal sensory motor neurotransmitter in rat mesenteric arteries, was not different at pH 6.9 or pH 6.3. In rVR1-transfected HEK293 cells, acidic conditions enhanced the affinities of capsaicin and capsazepine at rVR1, but did not affect the potency of carbachol at endogenous muscarinic receptors. Following inactivation of endogenous acid-sensitive ion channels, lowering pH (6.0-4.5) directly increased [Ca2+]i in rVR1-HEK293 cells (EC50 5.5). This response was abolished by 1 microM capsazepine. In conclusion, a decrease in pH (to 6.9 and 6.3) enhances the affinity of capsaicin at rVR1, but inhibits sensory neurotransmission in the rat mesenteric arterial bed. This likely explains why there is no evidence of an enhancement of sensitivity to capsaicin at endogenous vanilloid receptors, as observed with rVR1. When pH is reduced still further (6.0-5.5) there is direct activation of rVR1.


Assuntos
Capsaicina/farmacologia , Hidrogênio/metabolismo , Artérias Mesentéricas/inervação , Neurônios Aferentes/fisiologia , Receptores de Droga/metabolismo , Transmissão Sináptica/fisiologia , Animais , Linhagem Celular , Estimulação Elétrica , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Neurônios Aferentes/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Recombinantes , Transmissão Sináptica/efeitos dos fármacos , Vasodilatação/fisiologia
19.
Biomed Chromatogr ; 4(4): 178-80, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2145047

RESUMO

A simple high performance liquid chromatographic method has been devised for the measurement of bisoprolol in plasma or serum. The sample (200 microL) is vortex mixed for 30 s with 2 M Tris solution (50 microL), aqueous internal standard (benzimidazole, 2.0 mg/L, 50 microL) and methyl t-butyl ether (200 microL). After centrifugation (9950 x g, 2 min), a portion of the resulting extract is analysed on a microparticulate (5 microns) silica column using 1 mM camphorsulphonic acid in methanol as the mobile phase. Detection is by fluorescence at an excitation wavelength of 215 nM. The lower limit of accurate measurement for the assay is 10 micrograms/L (CV% = 8.9, n = 9) with a lower limit of detection of 5 micrograms/L. There is minimal interference from either commonly prescribed drugs or endogenous compounds.


Assuntos
Propanolaminas/sangue , Bisoprolol , Cromatografia Líquida de Alta Pressão , Humanos , Indicadores e Reagentes , Espectrometria de Fluorescência
20.
Br J Anaesth ; 89(6): 882-7, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453933

RESUMO

BACKGROUND: Anandamide, an endogenous lipid, activates both cannabinoid (CB(1)) and vanilloid (VR1) receptors, both of which are co-expressed in rat dorsal root ganglion (DRG) cells. Activation of either receptor results in analgesia but the relative contribution of CB(1) and VR1 in anandamide-induced analgesia remains controversial. Here we compare the in vitro pharmacology of recombinant and endogenous VR1 receptors using calcium imaging, in clonal and DRG cells, respectively. We also consider the contribution of CB(1) and VR1 receptors to anandamide-induced analgesia. METHODS: Using a Flurometric Imaging Plate Reader (FLIPR), calcium imaging has been used to study the effects of several vanilloid and cannabinoid ligands in rat VR1-transfected HEK293 (rVR1-HEK) cells and in DRG cells. The effect of pre-exposure of several vanilloid and cannabinoids has also been compared in DRG cells. RESULTS: The VR1 agonists capsaicin, olvanil, (N-(4-hydroxyphenyl-arachinoylamide) (AM404) and anandamide caused a concentration-dependent increase in intracellular calcium concentration ([Ca(2+)](i)), with similar temporal profiles in both rVR1-HEK and DRG cells, and potency (pEC(50)) values of 8.25 (SEM 0.11), 8.37 (0.04), 6.96 (0.06), 5.85 (0.01) and 7.45 (0.10), 7.55 (0.07), 6.10 (0.13), approximately 5.5, respectively. These responses were inhibited by the VR1 antagonist capsazepine (1 micro M). In contrast, application of synthetic cannabinoid antagonists failed to inhibit the anandamide-induced increase in [Ca(2+)](i). Reapplication of VR1 agonists significantly inhibited a subsequent challenge to either capsaicin or anandamide in either cell type, whilst pre-exposure to cannabinoid agonists were without effect. CONCLUSION: Here we provide evidence that the pharmacology of recombinant rVR1 receptors is similar to those endogenously expressed in DRG cells. Moreover, we have shown that VR1, but not CB(1), receptors are involved in anandamide-induced responses in dorsal root primary neurones in vitro. Therefore, the analgesic properties of anandamide are likely to be mediated, at least in part, by VR1 activation in DRG cells in vivo.


Assuntos
Ácidos Araquidônicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Capsaicina/análogos & derivados , Gânglios Espinais/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Animais , Cálcio/análise , Capsaicina/farmacologia , Células Cultivadas/efeitos dos fármacos , Células Clonais , Endocanabinoides , Gânglios Espinais/citologia , Alcamidas Poli-Insaturadas , Ratos , Receptores de Canabinoides , Receptores de Droga/agonistas , Receptores de Droga/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA