Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 33(9): 1844-1854.e6, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37086717

RESUMO

The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.


Assuntos
Brachypodium , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Brachypodium/genética , Peroxidase/metabolismo , Folhas de Planta/fisiologia , Peroxidases/metabolismo
2.
Elife ; 112022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537077

RESUMO

Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.


Assuntos
Folhas de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Divisão Celular , Divisão Celular Assimétrica , Poaceae , Polaridade Celular
3.
Plant J ; 62(4): 601-14, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20149141

RESUMO

Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Células Cultivadas , Mutação , Transporte Proteico , Protoplastos/metabolismo , Interferência de RNA , Nexinas de Classificação , Nicotiana/genética , Nicotiana/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA