Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
iScience ; 27(6): 109967, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827400

RESUMO

Although human cortical interneurons (cINs) are a minority population in the cerebral cortex, disruption of interneuron development is a frequent contributor to neurodevelopmental disorders. Here, we utilized a model for deriving cINs from human embryonic stem cells to profile chromatin state changes and generate an atlas of cis-regulatory elements (CREs) controlling human cIN development. We used these data to define candidate transcription factors (TFs) that may bind these CREs to regulate interneuron progenitor specification. Among these were RFX3 and RFX4, risk genes for autism spectrum disorder (ASD) with uncharacterized roles in human neuronal development. Using RFX3 and RFX4 knockdown models, we demonstrated new requirements for both genes in interneuron progenitor specification, with RFX3 deficiency causing precocious neuronal differentiation while RFX4 deficiency instead resulted in cessation of progenitor cell proliferation. Together, this work both defined central features of cis-regulatory control and identified new TF requirements for human interneuron development.

2.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37856080

RESUMO

An astrocyte's intricate morphology is essential for proper brain function, but the intrinsic and extrinsic cues that set astrocyte morphology are largely unknown. In this issue, Tan et al. (https://doi.org/10.1083/jcb.202303138) show that layer-specific expression of neuronal cadherins locally regulates astrocyte morphogenesis and heterogeneity.


Assuntos
Astrócitos , Caderinas , Astrócitos/metabolismo , Morfogênese , Caderinas/genética , Caderinas/metabolismo
3.
Parasitol Int ; 83: 102357, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33901678

RESUMO

It is estimated that one billion people globally are infected by parasitic nematodes, with children, pregnant women, and the elderly particularly susceptible to morbidity from infection. Control methods are limited to de-worming, which is hampered by rapid re-infection and the inevitable development of anthelmintic resistance. One family of proteins that has been implicated in nematode anthelmintic resistance are the ATP binding cassette (ABC) transporters. ABC transporters are characterized by a highly conserved ATP-binding domain and variable transmembrane regions. A growing number of studies have associated ABC transporters in anthelmintic resistance through a protective mechanism of drug efflux. Genetic deletion of P glycoprotein type ABC transporters in Caenorhabditis elegans demonstrated increased sensitivity to anthelmintics, while in the livestock parasite, Haemonchus contortus, anthelmintic use has been shown to increase the expression of ATP transporter genes. These studies as well as others, provide evidence for a potential role of ABC transporters in drug resistance in nematodes. In order to understand more about the family of ABC transporters, we used hidden Markov models to predict ABC transporter proteins from 108 species across the phylum Nematoda and use these data to analyze patterns of diversification and loss in diverse nematode species. We also examined temporal patterns of expression for the ABC transporter family within the filarial nematode Brugia malayi and identify cases of differential expression across diverse life-cycle stages. Taken together, our data provide a comprehensive overview of ABC transporters in diverse nematode species and identify examples of gene loss and diversification in nematodes based on lifestyle and taxonomy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genes de Helmintos/genética , Variação Genética , Nematoides/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA