Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512845

RESUMO

Recent advances in gene editing are enabling the engineering of cells with an unprecedented level of scale. To capitalize on this opportunity, new methods are needed to accelerate the different steps required to manufacture and handle engineered cells. Here, we describe the development of an integrated software and hardware platform to automate Fluorescence-Activated Cell Sorting (FACS), a central step for the selection of cells displaying desired molecular attributes. Sorting large numbers of samples is laborious, and, to date, no automated system exists to sequentially manage FACS samples, likely owing to the need to tailor sorting conditions ("gating") to each individual sample. Our platform is built around a commercial instrument and integrates the handling and transfer of samples to and from the instrument, autonomous control of the instrument's software, and the algorithmic generation of sorting gates, resulting in walkaway functionality. Automation eliminates operator errors, standardizes gating conditions by eliminating operator-to-operator variations, and reduces hands-on labor by 93%. Moreover, our strategy for automating the operation of a commercial instrument control software in the absence of an Application Program Interface (API) exemplifies a universal solution for other instruments that lack an API. Our software and hardware designs are fully open-source and include step-by-step build documentation to contribute to a growing open ecosystem of tools for high-throughput cell biology.


Assuntos
Software , Automação , Citometria de Fluxo/métodos
2.
PLOS Glob Public Health ; 4(2): e0002766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381748

RESUMO

Luminescence is ubiquitous in biology research and medicine. Conceptually simple, the detection of luminescence nonetheless faces technical challenges because relevant signals can exhibit exceptionally low radiant power densities. Although low light detection is well-established in centralized laboratory settings, the cost, size, and environmental requirements of high-performance benchtop luminometers are not compatible with geographically-distributed global health studies or resource-constrained settings. Here we present the design and application of a ~$700 US handheld, battery-powered luminometer with performance on par with high-end benchtop instruments. By pairing robust and inexpensive Silicon Photomultiplier (SiPM) sensors with a low-profile shutter system, our design compensates for sensor non-idealities and thermal drift, achieving a limit of detection of 1.6E-19 moles of firefly luciferase. Using these devices, we performed two pilot cross-sectional serology studies to assess sars-cov-2 antibody levels: a cohort in the United States, as well as a field study in Bangladesh. Results from both studies were consistent with previous work and demonstrate the device's suitability for distributed applications in global health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA