Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Small ; 19(3): e2206114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36412072

RESUMO

Photo-responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low-temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4 Ti4 O15 (SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g-1 h-1 , without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self-polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2 adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts.

2.
Environ Res ; 210: 112937, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35157918

RESUMO

The high-throughput production of the eco-friendly MIL-88A(Fe) was achieved under mild reaction conditions with normal pressure and temperature. The as-prepared MIL-88A(Fe) exhibited efficient photo-Fenton catalytic ofloxacin (OFL) degradation upon visible light irradiation with good stability and reusability. The OFL (20.0 mg/L) was completely degraded within 50 min under visible light with the aid of MIL-88A(Fe) (0.25 g/L) and H2O2 (1.0 mL/L) in aqueous solution (pH = 7.0). The hydroxyl radicals (·OH) are the main active species during the photo-Fenton oxidation process. Meanwhile, the degradation intermediates and the corresponding degradation pathways were identified and proposed with the aid of both ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and density functional theory (DFT) calculations. Finally, the degradation product library was firstly established to identify intermediate transformation products (TPs) with their variation of concentration, and their corresponding toxicologic activities were assessed via Toxtree and T.E.S.T software as well. Finally, the MIL-88A is efficient and stable with four cycles' catalysis operations, demonstrating good potential for water treatment.


Assuntos
Ofloxacino , Purificação da Água , Catálise , Peróxido de Hidrogênio/química , Ofloxacino/toxicidade , Purificação da Água/métodos
3.
Environ Sci Technol ; 55(6): 4045-4053, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33625227

RESUMO

Herein, a silicate-enhanced flow-through electro-Fenton system with a nanoconfined catalyst was rationally designed and demonstrated for the highly efficient, rapid, and selective degradation of antibiotic tetracycline. The key active component of this system is the Fe2O3 nanoparticle filled carbon nanotube (Fe2O3-in-CNT) filter. Under an electric field, this composite filter enabled in situ H2O2 generation, which was converted to reactive oxygen species accompanied by the redox cycling of Fe3+/Fe2+. The presence of the silicate electrolyte significantly boosted the H2O2 yield by preventing the O-O bond dissociation of the adsorbed OOH*. Compared with the surface coated Fe2O3 on the CNT (Fe2O3-out-CNT) filter, the Fe2O3-in-CNT filter demonstrated 1.65 times higher kL value toward the degradation of the antibiotic tetracycline. Electron paramagnetic resonance and radical quenching tests synergistically verified that the dominant radical species was the 1O2 or HO· in the confined Fe2O3-in-CNT or unconfined Fe2O3-out-CNT system, respectively. The flow-through configuration offered improved tetracycline degradation kinetics, which was 5.1 times higher (at flow rate of 1.5 mL min-1) than that of a conventional batch reactor. Liquid chromatography-mass spectrometry measurements and theoretical calculations suggested reduced toxicity of fragments of tetracycline formed. This study provides a novel strategy by integrating state-of-the-art material science, Fenton chemistry, and microfiltration technology for environmental remediation.


Assuntos
Peróxido de Hidrogênio , Ferro , Catálise , Oxirredução , Silicatos
4.
Data Brief ; 55: 110595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966663

RESUMO

Machine learning (ML) has seen success in civil and structural engineering, but its application to forecasting corrosion of steel reinforcement in concrete structures is limited due to small datasets from isolated studies. Moreover, the existing corrosion dataset of reinforced concrete typically lacks sufficient and comprehensive material and environmental information that enables reliable corrosion prediction of reinforced concrete under complex corrosion scenarios. This work aims to bridge the gap by compiling and building a comprehensive corrosion dataset focusing on carbon steel in cementitious mortars. This dataset involves 46 distinct mortar mixtures with embedded steel bars. The samples first underwent accelerated corrosion testing (either by carbonation or chloride contamination), followed by investigating their corrosion behaviours under varying relative humidity (RH) conditions. Corrosion data were obtained during this period, in which all corrosion measurements were conducted in laboratory settings and the results are tabulated in spreadsheet format (.xlsx). The dataset encompasses mixture parameters, material properties, environmental parameters, and electrochemical parameters. This extensive dataset provides valuable corrosion data for training ML models to predict steel corrosion across various corrosion-related variables.

5.
J Hazard Mater ; 465: 133033, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006861

RESUMO

Cyano liquid crystal monomers (LCMs) are proposed as emerging chemical pollutants with persistent, bioaccumulative, and toxic properties. Herein, five cyano LCMs, including 4-cyano-4'-ethylbiphenyl (2CB), 4-Butyl-4'-cyanobiphenyl (4CB), 4-cyano-4'-ethoxybiphenyl (2OCB), 4-(trans-4-Ethylcyclohexyl)benzonitrile (2CHB) and 4-(trans-4-Vinylcyclohexyl)benzonitrile (2eCHB), were selected to investigate the reaction kinetics and excited state characteristic variations with their molecular structures by ultraviolet (UV) photolysis. Theoretical calculations reveal that the benzene ring, ethoxy and double bond can deeply alter the electron distribution of cyano LCMs. This will affect the exciton separation ability, excitation properties and active sites to electrophilic attack, causing the distinction in photolysis efficiency. Due to the effective charge separation during local excitation (LE) process and the property of being most susceptible to electrophilic attack by 1O2 and O2•-, 2eCHB with double bond exhibits the largest degradation rate. Conversely, the weakest exciton separation of 2OCB with ethoxy during charge transfer (CT) process limits its subsequent sensitized photolysis process. The molecular orbital and fragment contributions to holes and electrons further deepen the understanding of the excited states charge transfer. This study confirmed that the intrinsic molecular structure, chemical nature and existing sites directly defined the excitation and decomposition activity in the UV photolysis of cyano LCMs.

6.
Sci Total Environ ; 926: 171872, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521253

RESUMO

Heterojunctions composed of cobalt-based materials and carbon materials have been recognized as the efficient catalysts for peroxymonosulfate (PMS) activation to generate reactive oxygen species for the removal of environmental contaminants. However, the role of carbon materials in promoting the heterojunction systems has not been fully understood. This study synthesized a heterojunction material of graphene sheets encapsulating Co3O4 (GCO-500) through the pyrolysis of cobalt MOF and applied it to activate PMS for the removal of lomefloxacin. The results showed a high removal rate of 93.59 % with a degradation rate of k1 = 0.0156 min-1. Co3O4 clusters was encapsulated within ultrathin graphene sheets (<2 nm). DFT calculations revealed that graphene layers improve the electron transfer ability of Co3O4 and increased the d-band center of Co3O4 (-1.61 eV) that promote the adsorption of PMS on GCO-500 (-1.32 eV). In the meanwhile, organic pollutant was enriched in graphene layers with high adsorption energy (-13.08 eV), which greatly enhanced the degradation efficiency of pharmaceuticals. This study provides an effective catalyst for PMS activation and sheds light on the fundamental electronic-level understanding of cobalt-based and carbon heterojunction catalysts in PMS activation.

7.
Adv Mater ; 35(47): e2301752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815114

RESUMO

Upscaling efficient and stable perovskite films is a challenging task in the industrialization of perovskite solar cells partly due to the lack of high-performance hole transport materials (HTMs), which can simultaneously promote hole transport and regulate the quality of perovskite films especially in inverted solar cells. Here, a novel HTM based on N-C = O resonance structure is designed for facilitating the modulation of the crystallization and bottom-surface defects of perovskite films. Benefiting from the resonance interconversion (N-C = O and N+ = C-O- ) in donor-resonance-donor (D-r-D) architecture and interactions with uncoordinated Pb2+ in perovskite, the resulting D-r-D HTM with two donor units exhibits not only excellent hole extraction and transport capacities, but also efficient crystallization modulation of perovskite for high-quality photovoltaic films in large area. The D-r-D HTM-based large-area (1.02 cm2 ) devices exhibit high power conversion efficiencies (PCEs) up to 21.0%. Moreover, the large-area devices have excellent photo-thermal stability, showing only a 2.6% reduction in PCE under continuous AM 1.5G light illumination at elevated temperature (≈65 °C) for over 1320 h without encapsulation.

8.
Water Res ; 220: 118650, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640506

RESUMO

GenX, the ammonium salt of hexafluoropropylene oxide dimer acid, has been used as a replacement for perfluorooctanoic acid. Due to its widespread uses, GenX has been detected in waters around the world amid growing concerns about its persistence and adverse health effects. As relevant regulations are rapidly evolving, new technologies are needed to cost-effectively remove and degrade GenX. In this study, we developed an adsorptive photocatalyst by depositing a small amount (3 wt.%) of bismuth (Bi) onto activated-carbon supported titanate nanotubes, Bi/TNTs@AC, and tested the material for adsorption and subsequent solid-phase photodegradation of GenX. Bi/TNTs@AC at 1 g/L was able to adsorb GenX (100 µg/L, pH 7.0) within 1 h, and then degrade 70.0% and mineralize 42.7% of pre-sorbed GenX under UV (254 nm) in 4 h. The efficient degradation also regenerated the material, allowing for repeated uses without chemical regeneration. Material characterizations revealed that the active components of Bi/TNTs@AC included activated carbon, anatase, and Bi nanoparticles with a metallic Bi core and an amorphous Bi2O3 shell. Electron paramagnetic resonance spin-trapping, UV-vis diffuse reflectance spectrometry, and photoluminescence analyses indicated the superior photoactivity of Bi/TNTs@AC was attributed to enhanced light harvesting and generation of charge carriers due to the UV-induced surface plasmon resonance effect, which was enabled by the metallic Bi nanoparticles. •OH radicals and photogenerated holes (h+) were responsible for degradation of GenX. Based on the analysis of degradation byproducts and density functional theory calculations, photocatalytic degradation of GenX started with cleavage of the carboxyl group and/or ether group by •OH, h+, and/or eaq-, and the resulting intermediates were transformed into shorter-chain fluorochemicals following the stepwise defluorination mechanism. Bi/TNTs@AC holds the potential for more cost-effective degradation of GenX and other per- and polyfluorinated alkyl substances.


Assuntos
Nanotubos , Água , Adsorção , Bismuto/química , Carvão Vegetal , Nanotubos/química , Fotólise
9.
J Hazard Mater ; 424(Pt C): 127563, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736201

RESUMO

Design of high-efficiency visible light photocatalysts is critical in the degradation of antibiotic pollutants in water, a key step towards environmental remediation. In the present study, Mo-doped BiOBr nanocomposites are prepared hydrothermally at different feed ratios, and display remarkable visible light photocatalytic activity towards the degradation of sulfanilamide, a common antibacterial drug. Among the series, the sample with 2% Mo dopants exhibits the best photocatalytic activity, with a performance 2.3 times better that of undoped BiOBr. This is attributed to Mo doping that narrows the band gap of BiOBr and enhances absorption in the visible region. Additional contributions arise from the unique materials morphology, where the highly exposed (102) crystal planes enrich the photocatalytic active sites, and facilitate the adsorption of sulfanilamide molecules and their eventual attack by free radicals. The reaction mechanism and pathways are then unraveled based on theoretical calculations of the Fukui index and liquid chromatography/mass spectrometry measurements of the reaction intermediates and products. Results from this study indicate that deliberate structural engineering based on heteroatom doping and morphological control may serve as an effective strategy in the design of highly active photocatalysts towards antibiotic degradation.


Assuntos
Bismuto , Luz , Catálise , Sulfanilamida
10.
Sci Total Environ ; 781: 146754, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812120

RESUMO

A highly solar active AgBr/h-MoO3 composite was constructed by a facile precipitation method, and the charge separation tuning was achieved by photoreduction of AgBr. The photoreduced Ag0 on AgBr/h-MoO3 acted as charge transfer bridge to form Z-scheme heterostructure, while the high degree of Ag reduction converted the material into type-II heterostructure. The synthesized optimal material promoted charge separation and visible light activity due to the incorporation of highly solar active AgBr, which showed ca. 2 times activity on trimethoprim (TMP) degradation than h-MoO3. The contribution of reactive species on TMP degradation followed the order of O2- >1O2 > h+, which agree well with the proposed charge separation mechanism. The photocatalytic degradation mechanism of TMP was proposed based on the radical quenching, intermediate analysis and DFT calculation. The toxicity analysis based on QSAR calculation showed that part of the degradation intermediates are more toxic than TMP, thus sufficient mineralization are required to eliminate the potential risks of treated water. Moreover, the material showed high stability and activity after four reusing cycles, and it is applicable to treat contaminants in various water matrix. This work is expected to provide new insight into the charge separation tuning mechanism for the AgX based heterojunction, and rational design of highly efficient photocatalysts for organic contaminants degradation by solar irradiation.

11.
J Hazard Mater ; 412: 125221, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516102

RESUMO

A novel solar active AgBr/BiOBr/TiO2 catalyst was synthesized by a facile coprecipitation method for solar-driven water remediation. The synthesized material composed of flower-like TiO2 nanoparticles loaded on BiOBr nanosheets and with homogeneous surface distributed Ag/AgBr nanoparticles. The internal electric field between BiOBr/TiO2 heterojunction greatly facilitated the charge carrier migration; the introduction of narrow band gap semiconductors (AgBr and BiOBr) promoted the visible light adsorption; and the Ag/AgBr nanoparticles acted as photosensitizer to further improve the light utilization. The new material showed 7.6- and 4.0-times activity of pure TiO2 and BiOBr under solar light, and the contribution of reactive species on anthracene degradation followed the order of h+ >O2•-> •OH. The degradation mechanism and pathway were proposed based on intermediates analysis and DFT calculation. The QSAR analysis revealed that the environmental risks of contaminants were greatly reduced during the photocatalysis process but some intermediates were still toxic. The high photocatalytic activity, stability and adaptability all indicated that this new material owns great application potential for cost-effective photocatalytic remediation of persistent organic contaminants under solar light.

12.
J Hazard Mater ; 402: 123779, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254790

RESUMO

Developing efficient pharmaceuticals and personal care products (PPCPs) degradation technologies is of scientifical and practical importance to restrain their discharge into natural water environment. This study fabricated and applied a composite material of amorphous MnO2 nanoparticles in-situ anchored titanate nanotubes (AMnTi) to activate peroxymonosulfate (PMS) for efficient degradation and mineralization of carbamazepine (CBZ). The degradation pathway and toxicity evolution of CBZ during elimination were deeply evaluated through produced intermediates identification and theoretical calculations. AMnTi with a composition of (0.3MnO2)•(Na1.22H0.78Ti3O7) offered high activation efficiency of PMS, which exhibited 21- and 3-times degradation rate of CBZ compared with the pristine TNTs and MnO2, respectively. The high catalytic activity can be attributed to its unique structure, leading to a lattice shrinkage and small pores to confine the PMS molecule onto the interface. Therefore, efficient charge transfer and catalytic activation through MnOTi linkage occurred, and a MnTi cycle mediating catalytic PMS activation was found. Both hydroxyl and sulfate radicals played key roles in CBZ degradation. Theoretical calculations, i.e., density functional theory (DFT) and computational toxicity calculations, combined with intermediates identification revealed that CBZ degradation pathway was hydroxyl addition and NC cleavage. CBZ degradation in this system was also a toxicity-attenuation process.

13.
J Hazard Mater ; 418: 126180, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102367

RESUMO

The large consumption of acetaminophen (APAP) worldwide and unsatisfactory treatment efficiencies by conventional wastewater treatment processes give rise to the seeking of new technology for its effective removal. Herein, we proposed a facile one-step hydrothermal method to synthesize defective iron deposited titanate nanotubes (Fe/TNTs) for peroxymonosulfate (PMS) activation and APAP degradation. The retarded first-order reaction rate of APAP degradation by Fe/TNTs was 5.1 times higher than that of neat TNTs. Characterizations indicated iron deposition effectively induced oxygen vacancies and Ti3+, facilitating the electrical conductivity and PMS binding affinity of Fe/TNTs. Besides, oxygen vacancies could act as an electron mediator through PMS activation by iron. Moreover, the formation of Fe-O-Ti bond facilitated the synergistic redox coupling between Fe and Ti, further enhancing the PMS activation. SO4•- was the major radical, causing C-N bond cleavage and decreasing the overall toxicity. In contrast, APAP degradation by neat TNTs-PMS system mainly works through nonradical reaction. The Fe/TNTs activated PMS showed desired APAP removal under mild water chemistry conditions and good reusability. This work is expected to expand the potential application of titanate nanomaterials for PMS activation, and shed light on facile synthesis of oxygen defective materials for sulfate-radical-based advanced oxidation processes.


Assuntos
Acetaminofen , Nanotubos , Acetaminofen/toxicidade , Ferro , Oxigênio , Peróxidos , Água
14.
Water Res ; 194: 116961, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657492

RESUMO

In this study, we designed an integrated electrochemical filtration system for catalytic activation of peroxymonosulfate (PMS) and degradation of aqueous microcontaminants. Composites of carbon nanotube (CNT) and nanoscale zero valence copper (nZVC) were developed to serve as high-performance catalysts, electrode and filtration media simultaneously. We observed both radical and nonradical reaction pathways, which collectively contributed to the degradation of model pollutants. Congo red was completely removed via a single-pass through the nZVCCNT filter (τ <2 s) at neutral pH. The rapid kinetics of Congo red degradation were maintained across a wide pH range (from 3.0-7.0), in complicated matrixes (e.g., tap water and lake water), and for the degradation of a wide array of persistent organic contaminants. The superior activity of nZVCCNT stems from the boosted redox cycles of Cu2+/Cu+ in the presence of an external electric field. The flow-through design remarkably outperformed the conventional batch system due to the convection-enhanced mass transport. Mechanism studies suggested that the carbonyl group and electrophilic oxygen of CNT served as electron donor and electron acceptor, respectively, to activate PMS to generate •OH and 1O2via one-electron transport. The electron-deficient Cu atoms are prone to react with PMS via surface hydroxyl group to produce reactive intermediates (Cu2+-O-O-SO3-), and then 1O2 will be generated by breaking the coordination bond of the metastable intermediate. The study will provide a green strategy for the remediation of organic pollution by a highly efficient and integrated system based on catalytic oxidation, electrochemistry, and nano-filtration techniques.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Catálise , Cobre , Oxirredução , Peróxidos
15.
Sci Total Environ ; 752: 141901, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207532

RESUMO

Bifunctional Bi12O17Cl2/MIL-100(Fe) composite (BMx) was firstly constructed via facile ball-milling method. The optimal BM200 was highly efficient for Cr(VI) sequestration and activation of persulfate (PS) for bisphenol A (BPA) decomposition under white light illumination, which was much more remarkable than the pristine MIL-100(Fe) and Bi12O17Cl2, respectively. Furthermore, the photocatalytic reduction efficiency can be significantly improved via the addition of some green small organic acids (SOAs). As well, the BPA degradation can be achieved over an extensive initial pH range of 3.0-11.0. When the PS concentration increased to more than 2.0 mM, the BPA degradation efficiency decreased due to the SO4-• self-scavenging effect. It was also found that the co-existence of inorganic anions like H2PO4-, HCO3-, SO42-, Cl- and NO3- could decelerate the BPA degradation. The excellent photocatalytic Cr(VI) reduction and persulfate activation performances originated from both MIL-100(Fe) with excellent PS activation ability and Bi12O17Cl2 with a favorable band position, which not only enabled the efficient separation of charges but also accelerated the formation of SO4-• radicals. The BM200 displayed prominent stability and recyclability. More importantly, the credible degradation pathway was proposed based on UHPLC-MS analysis and DFT calculation. This research revealed that the Fe-based MOFs/bismuth-rich bismuth oxyhalides (BixOyXz, X = Cl, Br and I) composites possessed great potential in wastewater remediation.

16.
Sci Total Environ ; 764: 142930, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33131884

RESUMO

The photo-ammonification process plays a crucial role in the transformation of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN). However, previous studies have primarily focused on DON biotransformation than on abiotic processes. This study investigated the photo-ammonification process of nine model low molecular weight (LMW) DON molecules (e.g., amino acids, nucleotides, and urea) under the influence of different light sources. The results showed that photo-ammonification of model DON was mainly induced by UV light, while negligible contribution by visible light was found. Depending on their molecular structures, amino acids yielded different ammonia amounts, whereas negligible photo-ammonification was observed for nucleotides and urea. As for the reactive species, OH promoted ammonia yields of all the model amino acids; 3CDOM⁎ contributed to the photo-ammonification of six amino acids; 1O2 only had a positive impact on ammonification of tryptophan, histidine, and tyrosine; and CO3- accelerated ammonia generation from histidine and methionine. In natural water samples, tryptophan, tyrosine, histidine, and methionine generated significant ammonia. OH and 1O2 were speculated as the contributing reactive species based on kinetic studies as well as significant fluorescent humic-like and tyrosine-like substances degradation in irradiated samples compared to the raw samples characterized by the EEM-PARAFAC analysis. The negative linear correlations between photo-ammonification rates and the ELUMO-EHOMO of the amino acids emphasized the importance of the role of the molecular structure. Overall, these results revealed the LMW DON photo-ammonification mechanism in sunlit surface waters and highlighted its significance in the nitrogen biogeochemical cycle as well as water quality management.

17.
Sci Total Environ ; 704: 135402, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896215

RESUMO

Cadmium (Cd) is one of the most commonly detected toxic heavy metals in the environment. Ferrous sulfide (FeS) nanoparticles were prepared using sodium carboxymethyl cellulose (CMC) as a stabilizer and tested for removal of Cd from aqueous solutions. Effects of CMC concentration, initial Cd concentration, pH, humic acid (HA) and dissolved oxygen were examined. Fully stabilized FeS (100 mg/L) nanoparticles were obtained using 0.01 wt% CMC. Batch kinetic tests showed that the nanoparticles at 100 mg/L as FeS rapidly removed 93% of 1 mg/L Cd within 4 h at pH 7.0, and the kinetic data were well interpreted by a pseudo-second-order rate model with a rate constant of 6.68 g·mg-1·hr-1. Sorption isotherm was well simulated by a dual-mode isotherm model with a maximum Langmuir sorption capacity of 497.5 mg/L at pH 7.0. Fourier transform infrared (FTIR) spectroscopy and X-ray powder diffraction (XRD) analyses suggested that chemical precipitation and surface complexation between Cd and FeS were dominant immobilization mechanisms. Increasing pH from 4.0 to 8.0 enhanced Cd removal rate from 73.0% to 98.8%, whereas addition of 3 mg/L HA (as total organic matter) inhibited the removal rate by 2.7% and the presence of molecular oxygen had negligible effect. Increasing NaCl or CaCl2 from 0 to 10 mM suppressed Cd removal by 10.1% and 27.7%, respectively. The immobilized Cd remained insoluble when aged for 717 days under anoxic or oxic conditions. This study demonstrated that CMC-stabilized FeS nanoparticles can facilitate long-term immobilization of cadmium in contaminated water.

18.
Environ Pollut ; 256: 113416, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677871

RESUMO

Marine oil spill often causes contamination of drinking water sources in coastal areas. As the use of oil dispersants has become one of the main practices in remediation of oil spill, the effect of oil dispersants on the treatment effectiveness remains unexplored. Specifically, little is known on the removal of dispersed oil from contaminated water using conventional adsorbents. This study investigated sorption behavior of three prototype activated charcoals (ACs) of different particle sizes (4-12, 12-20 and 100 mesh) for removal of dispersed oil hydrocarbons, and effects of two model oil dispersants (Corexit EC9500A and Corexit EC9527A). The oil content was measured as n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs). Characterization results showed that the smallest AC (PAC100) offered the highest BET surface area of 889 m2/g and pore volume of 0.95 cm3/g (pHPZC = 6.1). Sorption kinetic data revealed that all three ACs can efficiently adsorb Corexit EC9500A and oil dispersed by the two dispersants (DWAO-I and DWAO-II), and the adsorption capacity followed the trend: PAC100 > GAC12 × 20 > GAC4 × 12. Sorption isotherms confirmed PAC100 showed the highest adsorption capacity for dispersed oil in DWAO-I with a Freundlich KF value of 10.90 mg/g∙(L/mg)1/n (n = 1.38). Furthermore, the presence of Corexit EC9500A showed two contrasting effects on the oil sorption, i.e., adsolubilization and solubilization depending on the dispersant concentration. Increasing solution pH from 6.0 to 9.0 and salinity from 2 to 8 wt% showed only modest effect on the sorption. The results are useful for effective treatment of dispersed oil in contaminated water and for understanding roles of oil dispersants.


Assuntos
Hidrocarbonetos/química , Poluição por Petróleo , Poluentes Químicos da Água/química , Adsorção , Alcanos , Carvão Vegetal/química , Cinética , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Salinidade , Água do Mar/química , Tensoativos/química , Poluentes Químicos da Água/análise
19.
Environ Sci Ecotechnol ; 2: 100031, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36160918

RESUMO

Radioactive wastewater containing high concentration of radionuclides poses severe threats to ecosystem and human health, so efficient removal of these toxic heavy metals is urgently needed. Titanate nanomaterials have been demonstrated good adsorbents for heavy metals due to ion exchange property. In this study, titanate nanorings (TNRs) were synthesized using the facile hydrothermal-cooling method. The TNRs were composed of sodium trititanate, with a chemical formula of Na0.66H1.34Ti3O7•0.27H2O and a Na content of 2.38 mmol/g. The TNRs demonstrated sufficient adsorption performance to radionuclides europium (Eu) and uranium (U) ions. Specifically, even at a high initial concentration of 50 mg/L, 86.5% and 92.6% of the two metal ions can be rapidly adsorbed by the TNRs within 5 min, and equilibrium was reached within 60 min at pH 5. The maximum adsorption capacity (Q max) obtained by the Langmuir isotherm model was 115.3 mg/g for Eu(III) and 282.5 mg/g for uranium U(VI) at pH 5, respectively. The adsorption capacities of the two metals under various water chemical conditions were highly related to their species. Ion exchange between metal cations and Na+ in the TNR interlayers was the dominant adsorption mechanism, and adsorption of U(VI) was more complicated because of the co-existence of various uranyl (UO2 2+) and uranyl-hydroxyl species. The spent TNRs were effectively regenerated through an acid-base or ethylenediamine tetraacetic acid (EDTA) treatment and reused. Considering the large adsorption capacity and quick kinetic, TNRs are promising materials to remove radionuclides in environmental purification applications, especially emergent treatment of leaked radionuclides.

20.
Materials (Basel) ; 13(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842678

RESUMO

Based on the fractal geometry, a quantitative index describing the development degree of the internal corrosion expansion of reinforced concrete was proposed. This approach could describe the similarity and complexity of the development of corrosion-induced cracks in concrete simultaneously. Based on this approach, the influence of cracking pattern and coarse aggregate distribution on crack distribution was investigated. This study obtained the crack distribution of reinforced concrete by using the half-soaking galvanic accelerated corrosion method. The results showed that the cracking pattern was the main factor affecting the complexity of crack distribution. For cracks with the simplest cracking pattern, the presence of coarse aggregate and its surface irregularity greatly affected their development trend.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA