Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39262272

RESUMO

Because of the composition and structural complexity of crustacean shells, their color change mechanism during thermal processing remains unclear. This study identified and characterized two intrinsic protein components, hemocyanin (Lv-Hc) and ß-1,3-glucan-binding protein (Lv-BGBP) from Litopenaeus vannamei shrimp shells by a combination of ion-exchange chromatography, gel filtration, and mass spectrometry. It was found that a mixture of Lv-Hc, a gray protein, and Lv-BGBP (which is a natural astaxanthin-binding protein with a red color) is responsible for the brown color of fresh shrimp shells. Upon heating to 100 °C, the mixture of these proteins turned red, mimicking the color change observed in cooked shrimp shells. This transition is attributed to the extremely high thermal stability of Lv-BGBP, which has the ability to protect astaxanthin from thermal induced degradation. These findings provide significant insights into the molecular mechanism governing shrimp shell coloration, advancing our understanding of crustacean biochemistry.

2.
Int J Biol Macromol ; 269(Pt 1): 132041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705315

RESUMO

Hemocyanin, an oxygen-transport protein, is widely distributed in the hemolymph of marine arthropods and mollusks, playing an important role in their physiological processes. Recently, hemocyanin has been recognized as a multifunctional glycoprotein involved in the immunological responses of aquatic invertebrates. Consequently, the link between hemocyanin functions and their potential applications has garnered increased attention. This review offers an integrated overview of hemocyanin's structure, physicochemical characteristics, and bioactivities to further promote the utilization of hemocyanin derived from marine products. Specifically, we review its implication in two aspects of food and aquaculture industries: quality and health. Hemocyanin's inducible phenoloxidase activity is thought to be an inducer of melanosis in crustaceans. New anti-melanosis agents targeted to hemocyanin need to be explored. The red-color change observed in shrimp shells is related to hemocyanin, affecting consumer preferences. Hemocyanin's adaptive modification in response to the aquatic environment is available as a biomarker. Additionally, hemocyanin is endowed with bioactivities encompassing anti-microbial, antiviral, and therapeutic activities. Hemocyanin is also a novel allergen and its allergenic features remain incompletely characterized.


Assuntos
Hemocianinas , Hemocianinas/química , Animais , Indústria Alimentícia , Organismos Aquáticos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA