Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34450998

RESUMO

Research on infrared detectors has been widely reported in the literature. For infrared detectors, PbS, InGaAs, PbSe, InSb, and HgxCd1-xTe materials are the most widely used and have been explored for photodetection applications. However, these are toxic and harmful substances which are not conducive to the sustainable development of infrared detectors and are not eco-friendly. Mg2Si is a green, healthy, and sustainable semiconductor material that has the potential to replace these toxic and damaging photoelectric materials, making photoelectric detectors (PDs) green, healthy, and sustainable. In this work, we report on the results of our simulation studies on the PN junction Mg2Si/Si heterojunction PD. A model structure of Mg2Si/Si heterojunction PD has been built. The effects of Mg2Si and Si layer thickness on the optical and electrical performance of Mg2Si/Si heterojunction PD are discussed. For the purpose of this analysis, we consider electrical performance parameters such as I-V curve, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on-off ratio, response time, and recovery time. The simulation results show that the Mg2Si/Si heterojunction PD shows optimum performance when the thickness of Si and Mg2Si layers are 300 nm and 280 nm, respectively. For the optimized structure, the reverse breakdown voltage was found to be -23.61 V, the forward conduction voltage was 0.51 V, the dark current was 5.58 × 10-13 A, and the EQE was 88.98%. The responsivity was found to be 0.437 A/W, the NEP was 6.38 × 10-12 WHz1/2, and the detectivity was 1.567 × 1011 Jones. With the on-off ratio of 1566, the response time was found to be 0.76 ns and the recovery time was 5.75 ns. The EQE and responsivity peak wavelength of PD show a redshift as the thickness of Mg2Si increases. The Mg2Si heterojunction PD can effectively detect infrared light in the wavelength range of 400 to 1400 nm. The simulation results can be utilized to drive the development of green Mg2Si/Si heterojunction PD in the future.


Assuntos
Nível de Saúde , Tecnologia
2.
Nanomaterials (Basel) ; 12(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36145018

RESUMO

In this investigation, p-Mg2Si/n-Si heterojunction photodetector (PD) is fabricated by magnetron sputtering and low vacuum annealing in the absence of argon or nitrogen atmosphere. Multilayer Graphene (MLG)/Mg2Si/Si heterojunction PD is first fabricated by transferring MLG to Mg2Si/Si heterojunction substrate using the suspended self-help transfer MLG method. After characterizing the phase composition, morphology and detection properties of Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs, the successful fabrication of the Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs are confirmed and some detection capabilities are realized. Compared with the Mg2Si/Si heterojunction PD, the light absorption and the ability to effectively separate and transfer photogenerated carriers of MLG/Mg2Si/Si heterojunction PD are improved. The responsivity, external quantum efficiency (EQE), noise equivalent power (NEP), detectivity (D*), on/off ratio and other detection properties are enhanced. The peak responsivity and EQE of the MLG/Mg2Si/Si heterojunction PD are 23.7 mA/W and 2.75%, respectively, which are better than the previous 1-10 mA/W and 2.3%. The results illustrate that the fabrication technology of introducing MLG to regulate the detection properties of the Mg2Si/Si heterojunction PD is feasible. In addition, this study reveals the potential of MLG to enhance the detection properties of optoelectronic devices, broadens the application prospect of the Mg2Si/Si-based heterojunction PDs and provides a direction for the regulation of optoelectronic devices.

3.
Sci Rep ; 11(1): 21138, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707189

RESUMO

We investigate the parameter estimation problems of two-atom system driven by the phase noise lasers (PNLs) environment. And we give a general method of numeric solution to handle the problems of atom system under the PNLs environment. The calculation results of this method on Quantum Fisher Information (QFI) are consistent with our former results. Moreover, we consider the dipole-dipole (d-d) interaction between the atoms under PNLs environment with the collective decay, and the results show that larger d-d interaction and smaller collective decay rate lead to larger QFI of the two-atom system. So the collective decay will destroy the QFI while the d-d interaction will preserve the QFI, these results can be used to protect the QFI of two-atom system driven by the PNLs environment.

4.
RSC Adv ; 10(35): 20960-20971, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35692714

RESUMO

The photoelectric conversion efficiency of perovskite solar cells has improved rapidly, but their stability is poor, which is an important factor that restricts their commercial production. This paper studies the physical and chemical stability of perovskite solar cells based on first principles. It is well known that methylamido lead iodide compounds and methylamino lead iodide compounds are easily degraded into NH2CH[double bond, length as m-dash]NH2I, CH3NH3I and PbI2. First, the chemical stability of the above two perovskite-type solar cell materials is discussed by calculating the binding energy. Then, their phonon scattering lines, state density and thermodynamic properties are calculated and analyzed, and the work functions of different types of crystals along different planes such as [1 0 0], [0 1 0 0], [0 0 1] and [1 1 1] are calculated. The results show that the work function of the methylamine iodized lead compound is greater than that of the methylamidine iodized lead compound, which means that the electrons of the methylamidine iodized lead compound escape more easily and the carrier transfer efficiency is higher under the same conditions. Finally, the effects of different temperatures, different electric fields and light on the two kinds of crystal materials are analyzed. This provides theoretical guidance for us to improve the stability of perovskite materials experimentally.

5.
J Phys Chem Lett ; 10(22): 7009-7014, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31660736

RESUMO

The remarkable chemical activity of metal single-atom catalysts (SACs) lies in their unique electronic states associated with the low-coordination nature of single-atom sites. Yet, electronic state manipulation normally requires direct contact with other atoms, which inevitably changes the low-coordination environment. Herein, we found by first-principle calculations that the activity of a Co SAC for HCOOH dehydrogenation is appreciably enhanced via electronic state manipulation by a noncontact single atom promoter. A Co atom and a Sn/Ge/Pb atom are anchored in the same cavity of a graphitic C2N monolayer. Surprisingly, the nonbonded promoter makes two far splitting spin states of Co almost degenerate via charge redistribution of C2N support. Further, the high-spin Co gives a remarkably low reaction barrier comparable to Pt or Pd catalysts. Our results demonstrate that the activity of a SAC can be tuned via a noncontact promoter, casting new insights into electronic state modulation of SACs on graphene-like support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA