Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34326534

RESUMO

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Assuntos
Proteínas de Ligação a DNA/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Fatores de Transcrição/genética , Animais , Calgranulina A/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Lipocalina-2/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia , Transcrição Gênica/genética , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
2.
Am J Med Genet C Semin Med Genet ; : e32103, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152716

RESUMO

There remains a crucial need to address inequalities in genomic research and include populations from low- and middle-income countries (LMIC). Here we present eight consanguineous families from Pakistan, five with neurodevelopmental disorders (NDDs) and three with neuromuscular disorders (NMDs). Affected individuals were clinically characterized, and genetic variants were identified through exome sequencing (ES), followed by family segregation analysis. Affected individuals in six out of eight families (75%) carried homozygous variants that met ACMG criteria for being pathogenic (in the genes ADGRG1, METTL23, SPG11) or likely pathogenic (in the genes GPAA1, MFN2, SGSH). The remaining two families had homozygous candidate variants in the genes (AP4M1 and FAM126A) associated with phenotypes consistent with their clinical presentations, but the variants did not meet the criteria for pathogenicity and were hence classified as variants of unknown significance. Notably, the variants in ADGRG1, AP4M1, FAM126A, and SGSH did not have prior reports in the literature, demonstrating the importance of including diverse populations in genomic studies. We provide clinical phenotyping along with analyses of ES data that support the utility of ES in making accurate molecular diagnoses in these patients, as well as in unearthing novel variants in known disease-causing genes in underrepresented populations from LMIC.

3.
Genet Med ; 26(2): 101023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947183

RESUMO

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Assuntos
Transtornos do Neurodesenvolvimento , Reinfecção , Humanos , Leucócitos Mononucleares , Síndrome , Fenótipo , Arritmias Cardíacas/genética , Transtornos do Neurodesenvolvimento/genética , Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética
4.
Clin Genet ; 106(3): 347-353, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38774940

RESUMO

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.


Assuntos
Nanismo , Sequenciamento do Exoma , Mutação , Linhagem , Humanos , Feminino , Masculino , Nanismo/genética , Criança , Paquistão/epidemiologia , Predisposição Genética para Doença , Homozigoto , Fenótipo , Síndrome , Pré-Escolar , Adolescente , Estudos de Associação Genética
5.
Mol Pharm ; 21(4): 1677-1690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478716

RESUMO

Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1ß, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.


Assuntos
Periodontite Crônica , Nanopartículas , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite Crônica/tratamento farmacológico , Periodontite Crônica/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Macrófagos
6.
Genet Med ; 25(8): 100856, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092537

RESUMO

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Assuntos
Microftalmia , Receptores do Ácido Retinoico , Humanos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides
7.
Am J Med Genet A ; 191(3): 760-769, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495114

RESUMO

Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720-731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.


Assuntos
Artrogripose , Gravidez , Feminino , Humanos , Artrogripose/diagnóstico , Artrogripose/genética , Diagnóstico Pré-Natal , Homozigoto , Cuidado Pré-Natal , Síndrome , Conectina/genética
8.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203602

RESUMO

Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.


Assuntos
Cardiopatias Congênitas , Humanos , Animais , Camundongos , Cardiopatias Congênitas/genética , Encéfalo , Ventrículos do Coração , Hipóxia , Miócitos Cardíacos , Xenopus , Proteínas Cromossômicas não Histona , Proteínas de Ciclo Celular/genética , Proteínas de Xenopus
9.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32196547

RESUMO

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Assuntos
Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Ectrópio/genética , Cardiopatias Congênitas/genética , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Anodontia/diagnóstico por imagem , Anodontia/genética , Anodontia/fisiopatologia , Criança , Pré-Escolar , Fenda Labial/diagnóstico por imagem , Fenda Labial/fisiopatologia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Modelos Animais de Doenças , Ectrópio/diagnóstico por imagem , Ectrópio/fisiopatologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Camundongos , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/fisiopatologia , Xenopus , Adulto Jovem , delta Catenina
10.
Am J Med Genet A ; 188(10): 2869-2878, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899841

RESUMO

The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Estudos de Coortes , Testes Genéticos , Humanos , Fenótipo , Estudos Retrospectivos
11.
Am J Med Genet A ; 188(1): 357-363, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623748

RESUMO

D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.


Assuntos
Perda Auditiva Neurossensorial , Hipoglicemia , Deficiência de Proteína , Éxons , Perda Auditiva Neurossensorial/genética , Humanos , Hipoglicemia/genética , Recém-Nascido , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/genética
12.
J Med Genet ; 58(7): 453-464, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631816

RESUMO

BACKGROUND: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.


Assuntos
Ciliopatias/genética , Anormalidades Congênitas/genética , Proteínas de Membrana/genética , Mutação , Proteínas Supressoras de Tumor/genética , Animais , Encéfalo/patologia , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Feto/anormalidades , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/metabolismo , Humanos , Rim/patologia , Masculino , Linhagem , Transdução de Sinais , Sequenciamento do Exoma , Xenopus
13.
Mol Genet Genomics ; 296(4): 823-836, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33876311

RESUMO

Next-generation sequencing platforms are being increasingly applied in clinical genetic settings for evaluation of families with suspected heritable disease. These platforms potentially improve the diagnostic yield beyond that of disease-specific targeted gene panels, but also increase the number of rare or novel genetic variants that may confound precise diagnostics. Here, we describe a functional testing approach used to interpret the results of whole exome sequencing (WES) in a family presenting with syncope and sudden death. One individual had a prolonged QT interval on electrocardiogram (ECG) and carried a diagnosis of long QT syndrome (LQTS), but a second individual did not meet criteria for LQTS. Filtering WES results for uncommon variants with arrhythmia association identified four for further analyses. In silico analyses indicated that two of these variants, KCNH2 p.(Cys555Arg) and KCNQ1 p.(Arg293Cys), were likely to be causal in this family's LQTS. We subsequently performed functional characterization of these variants in a heterologous expression system. The expression of KCNQ1-Arg293Cys did not show a deleterious phenotype but KCNH2-Cys555Arg demonstrated a loss-of-function phenotype that was partially dominant. Our stepwise approach identified a precise genetic etiology in this family, which resulted in the establishment of a LQTS diagnosis in the second individual as well as an additional asymptomatic family member, enabling personalized clinical management. Given its ability to aid in the diagnosis, the application of functional characterization should be considered as a value adjunct to in silico analyses of WES.


Assuntos
Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos/genética , Análise Mutacional de DNA/métodos , Eletrocardiografia , Família , Feminino , Testes Genéticos/métodos , Células HEK293 , Testes de Função Cardíaca/métodos , Humanos , Canal de Potássio KCNQ1/genética , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Sequenciamento do Exoma
14.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438828

RESUMO

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Neuropeptídeos/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Larva/genética , Masculino , Fenótipo , Convulsões/genética , Convulsões/patologia , Xenopus laevis/genética
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(6): 513-520, 2021 Jun 10.
Artigo em Zh | MEDLINE | ID: mdl-34096016

RESUMO

The use of whole exome sequencing (WES) for the detection of disease-causing variants of genetic diseases and for non-invasive prenatal screening (NIPS) of fetal aneuploidies are two major clinical applications of next generation sequencing (NGS). This article has summarized the official documents developed and updated by the American College of Medical Genetics and Genomics (ACMG) on governing WES and NIPS. These include the development of expert consensus policies and position statements on an ongoing basis to guide clinical application of NGS technology and variant analysis, establish evidence-based practical resources, as well as standards and guidelines to govern diagnosis and screening. These ACMG documents are valuable references to Chinese geneticists, but direct adoption of these standards and guidelines may not be practical due to the differences in disease-associated variant frequencies in Chinese population, socioeconomic status, and medical practice between the two countries. It is hoped that this review could facilitate the development of NGS and NIPS standards and guidelines that are consistent with international standards and concordant with medical genetics practice in China to provide high-quality, efficient and safe clinical services for patients and their families with genetic diseases.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , China , Consenso , Feminino , Humanos , Gravidez , Tecnologia , Estados Unidos
16.
J Hum Genet ; 65(10): 911-915, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32435055

RESUMO

Two variants in the ubiquitously expressed NHLRC2 gene have been reported to cause a lethal fibrotic cerebropulmonary disease termed fibrosis, neurodegeneration, and cerebral angiomatosis (FINCA) syndrome in three Finnish children. Our objective was to determine the genetic basis of disease in a new patient with clinical features of FINCA syndrome using whole-exome sequencing (WES) and confirmation by Sanger sequencing. The patient has one known and one novel variant in NHLRC2 (c.442T>G, p.D148Y and c.428C>A, p.H143P, respectively). p.H143P is extremely rare and is not present in the gnomAD database of >140,000 allele sequences from healthy humans. Both variants affect the highly conserved N-terminal thioredoxin (Trx)-like domain of NHLRC2 and are predicted to be damaging. We conclude that a compound heterozygous combination of a known and a novel variant in NHLRC2 causes FINCA syndrome in a 2-year-old Ukrainian patient, underscoring the importance of NHLRC2 as a central regulator of fibrosis.


Assuntos
Angiomatose/genética , Neoplasias Encefálicas/genética , Cardiomegalia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pneumopatias/genética , Doenças Neurodegenerativas/genética , Mutação Puntual , Sequência de Aminoácidos , Cardiomegalia/patologia , Pré-Escolar , Fibrose , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Síndrome , Sequenciamento do Exoma
17.
Am J Med Genet A ; 182(9): 2049-2057, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656949

RESUMO

Heterozygous variants in the DYNC1H1 gene have been associated chiefly with intellectual disability (ID), malformations in cortical development (MCD), spinal muscular atrophy (SMA), and Charcot-Marie-Tooth axonal type 20 (CMT), with fewer reports describing other intersecting phenotypes. To better characterize the variable syndromes associated with DYNC1H1, we undertook a detailed analysis of reported patients in the medical literature through June 30, 2019. In sum we identified 200 patients from 143 families harboring 103 different DYNC1H1 variants, and added reports for four unrelated patients identified at our center, three with novel variants. The most common features associated with DYNC1H1 were neuromuscular (NM) disease (largely associated with variants in the stem domain), ID with MCD (largely associated with variants in the motor domain), or a combination of these phenotypes. Despite these trends, exceptions are noted throughout. Overall, DYNC1H1 is associated with variable neurodevelopmental and/or neuromuscular phenotypes that overlap. To avoid confusion DYNC1H1 disorders may be best categorized at this time by more general descriptions rather than phenotype-specific nomenclature such as SMA or CMT. We therefore propose the terms: DYNC1H1-related NM disorder, DYNC1H1-related CNS disorder, and DYNC1H1-related combined disorder. Our single center's experience may be evidence that disease-causing variants in this gene are more prevalent than currently recognized.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dineínas do Citoplasma/genética , Predisposição Genética para Doença , Atrofia Muscular Espinal/genética , Adolescente , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Fenótipo
18.
Am J Med Genet A ; 182(12): 3023-3028, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978894

RESUMO

Constitutional ring chromosome 9, r(9), is a rare chromosomal disorder. Cytogenomic analyses by karyotyping, array comparative genomic hybridization (aCGH) and whole genome sequencing (WGS) were performed in a patient of r(9). Karyotyping detected a mosaic pattern of r(9) and monosomy 9 in 83% and 17% of cells, respectively. aCGH detected subtelomeric deletions of 407 kb at 9p24.3 and 884 kb at 9q34.3 and an interstitial duplication of 5.879 Mb at 9q33.2q34.11. WGS revealed double strand breaks (DSBs) at ends of 9p24.3 and 9q34.3, inverted repeats at ends of subtelomeric and 9q33.2q34.11 regions, and microhomology sequences at the junctions of this r(9). This is the first report of r(9) analyzed by WGS to delineate the mechanism of ring chromosome formation from repairing of subtelomeric DSBs. The loss of telomeres by subtelomeric DSBs triggered inverted repeats induced intra-strand foldback and then microhomology mediated synthesis and ligation, which resulted in the formation of this r(9) with distal deletions and an interstitial duplication. Review of literature found seven patients of r(9) with clinical and cytogenomic findings. These patients and the present patient were registered into the Human Ring Chromosome Registry and a map correlating critical regions and candidate genes with relevant phenotypes was constructed. Variable phenotypes of r(9) patients could be explained by critical regions and genes of DOCK8, DMRT, SMARCA2, CD274, IL33, PTPRD, CER1, FREM1 for 9p deletions, and the EHMT1 gene for 9q34 deletion syndrome. This interactive registry of r(9) could provide information for cytogenomic diagnosis, genetics counseling and clinical management.


Assuntos
Anormalidades Múltiplas/patologia , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/patologia , Anormalidades Múltiplas/genética , Adulto , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Cromossomos em Anel , Telômero , Adulto Jovem
19.
Am J Med Genet A ; 182(10): 2291-2296, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812332

RESUMO

Recessive variants in the GLDN gene, which encodes the gliomedin protein and is involved in nervous system development, have recently been associated with Arthrogryposis Multiplex Congenita (AMC), a heterogenous condition characterized by congenital contractures of more than one joint. Two cohorts of patients with GLDN-associated AMC have previously been described, evolving the understanding of the condition from lethal to survivable with the provision of significant neonatal support. Here, we describe one additional patient currently living with the syndrome, having one novel variant, p.Leu365Phe, for which we provide functional data supporting its pathogenicity. We additionally provide experimental data for four other previously reported variants lacking functional evidence, including p.Arg393Lys, the second variant present in our patient. We discuss unique and defining clinical features, adding calcium-related findings which appear to be recurrent in the GLDN cohort. Finally, we compare all previously reported patients and draw new conclusions about scope of illness, with emphasis on the finding of pulmonary hypoplasia, suggesting that AMC secondary to GLDN variants may be best fitted under the umbrella of fetal akinesia deformation sequence (FADS).


Assuntos
Artrogripose/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Artrogripose/patologia , Pré-Escolar , Feminino , Humanos , Mutação , Linhagem
20.
J Med Genet ; 56(2): 113-122, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30323019

RESUMO

BACKGROUND: Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies. OBJECTIVES: This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative. METHODS: We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles. RESULTS: We identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic. CONCLUSION: This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neuropeptídeos/genética , Espasmos Infantis/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Pré-Escolar , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/etiologia , Sequenciamento do Exoma , Xenopus laevis/embriologia , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA