Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202319766, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598769

RESUMO

High-temperature dielectric polymers are in high demand for powering applications in extreme environments. Here, we have developed high-temperature homopolymer dielectrics with anisotropy by leveraging the hierarchical structure in semicrystalline polymers. The lamellae have been aligned parallel to the surface in the dielectric films. This structural arrangement resembles the horizontal alignment of nanosheet fillers in polymer nanocomposites and nanosheet-like lamellae in block copolymers, which has been proven to provide the optimal topological structure for electrical energy storage. The unique ordering of lamellae in our dielectric films endue a significantly increased breakdown strength and a reduced leakage current compared to amorphous films. This novel approach of enhancing the capacitive energy storage properties by controlled orientation of lamellae in homopolymer offers a new perspective for the design of high-temperature polymer dielectrics.

2.
Small ; 19(35): e2301360, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162438

RESUMO

Layered transition metal oxides are promising cathode materials for sodium-ion batteries due to their high energy density and appropriate operating potential. However, the poor structural stability is a major drawback to their widespread application. To address this issue, B3+ is successfully introduced into the tetrahedral site of Na0.67 Fe0.5 Mn0.5 O2 , demonstrating the effectiveness of small-radius ion doping in improving electrochemical performance. The obtained Na0.67 Fe0.5 Mn0.5 B0.04 O2 exhibits excellent cycling performance with 88.8% capacity retention after 100 cycles at 1 C and prominent rate performance. The structure-property relationship is constructed subsequently by neutron powder diffraction, in situ X-ray diffraction and X-ray absorption spectroscopy, which reveal that the Jahn-Teller distortion and the consequent P2-P2' phase transformation are effectively mitigated because of the occupancy of B3+ at the interstitial site. Furthermore, it is found that the transition metal layers are stabilized and the transition metal dissolution are suppressed, resulting in excellent cycling performance. Besides, the prominent rate performance is attributed to the enhanced diffusion kinetics associated with the rearrangement of Na+ . This work provides novel insight into the action mechanism of interstitial site doping and demonstrates a universal approach to improve the electrochemical properties of P2-type manganese-based sodium cathode materials.

3.
Adv Mater ; : e2407029, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007243

RESUMO

Facing the resource and environmental pressures brought by the retiring wave of lithium-ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward "direct upcycling." Herein, a closed-loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNi0.83Co0.12Mn0.05O2 cathodes while achieving single-crystallization transformation and introducing Al/Cu dual-doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next-generation high-voltage cathodes.

4.
Adv Sci (Weinh) ; : e2404701, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940403

RESUMO

The development of the electric vehicle industry has spurred demand for secondary batteries capable of rapid-charging and slow-discharging. Among them, sodium-ion batteries (SIBs) with layered oxide as the cathode exhibit competitive advantages due to their comprehensive electrochemical performance. However, to meet the requirements of rapid-charging and slow-discharging scenarios, it is necessary to further enhance the rate performance of the cathode material to achieve symmetrical capacity at different rates. Simultaneously, minimizing lattice strain during asymmetric electrochemical processes is also significant in alleviating strain accumulation. In this study, the ordered distribution of transition metal layers and the diffusion pathway of sodium ions are optimized through targeted K-doping of sodium layers, leading to a reduction of the diffusion barrier and endowment of prominent rate performance. At a 20C rate, the capacity of the cathode can reach 94% of that at a 0.1C rate. Additionally, the rivet effect of the sodium layers resulted in a global volume strain of only 0.03% for the modified cathode during charging at a 10C rate and discharging at a 1C rate. In summary, high-performance SIBs, with promising prospects for rapid-charging and slow-discharging capability, are obtained through the regulation of sodium layers, opening up new avenues for commercial applications.

5.
ACS Appl Mater Interfaces ; 15(28): 33682-33692, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427424

RESUMO

Sodium-ion batteries (SIBs) have garnered extensive attentions in recent years as a low-cost alternative to lithium-ion batteries. However, achieving both high capacity and long cyclability in cathode materials remains a challenge for SIB commercialization. P3-type Na0.67Ni0.33Mn0.67O2 cathodes exhibit high capacity and prominent Na+ diffusion kinetics but suffer from serious capacity decay and structural deterioration due to stress accumulation and phase transformations upon cycling. In this work, a dual modification strategy with both morphology control and element doping is applied to modify the structure and optimize the properties of the P3-type Na0.67Ni0.33Mn0.67O2 cathode. The modified Na0.67Ni0.26Cu0.07Mn0.67O2 layered cathode with hollow porous microrod structure exhibits an excellent reversible capacity of 167.5 mAh g-1 at 150 mA g-1 and maintains a capacity above 95 mAh g-1 after 300 cycles at 750 mA g-1. For one thing, the specific morphology shortens the Na+ diffusion pathway and releases stress during cycling, leading to excellent rate performance and high cyclability. For another, Cu doping at the Ni site reduces the Na+ diffusion energy barrier and mitigates unfavorable phase transitions. This work demonstrates that the electrochemical performance of P3-type cathodes can be significantly improved by applying a dual modification strategy, resulting in reduced stress accumulation and optimized Na+ migration behavior for high-performance SIBs.

6.
Sci Bull (Beijing) ; 68(1): 65-76, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581534

RESUMO

As a potential substitute for lithium-ion battery, sodium-ion batteries (SIBs) have attracted a tremendous amount of attention due to their advantages in terms of cost, safety and sustainability. Nevertheless, further improvement of the energy density of cathode materials in SIBs remains challenging and requires the activation of anion redox reaction (ARR) activity to provide additional capacity. Herein, we report a high-performance Mn-based sodium oxide cathode material, Na0.67Mg0.1Zn0.1Mn0.8O2 (NMZMO), with synergistic activation of ARR by cosubstitution. This material can deliver an ultra-high capacity of âˆ¼233 mAh/g at 0.1 C, which is significantly higher than their single-cation-substituted counterparts and among the best in as-reported MgMn or ZnMn-based cathodes. Various spectroscopic techniques were comprehensively employed and it was demonstrated that the higher capacity of NMZMO originated from the enhanced ARR activity. Neutron pair distribution function and resonant inelastic X-ray scattering experiments revealed that out-of-plane migration of Mg/Zn occurred upon charging and oxygen anions in the form of molecular O2 were trapped in vacancy clusters in the fully-charged-state. In NMZMO, Mg and Zn mutually interacted with each other to migrate toward tetrahedral sites, which provided a prerequisite for further ARR activity enhancement to form more trapped molecular O2. These findings provide unique insight into the ARR mechanism and can guide the development of high-performance cathode materials through ARR enhancement strategies.


Assuntos
Fontes de Energia Elétrica , Óxidos , Oxirredução , Íons , Eletrodos , Oxigênio
7.
Nanoscale ; 14(24): 8766-8775, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35674291

RESUMO

By controlling the chemical composition and the spatial organization of nanoparticles, hybrid nanocomposites incorporating ordered arrangements of nanoparticles could be endowed with exotic physical and chemical properties to fulfill demands in advanced electronics or energy-harvesting devices. However, a simple method to fabricate hybrid nanocomposites with precise control of nanoparticle distribution is still challenging. We demonstrate that block copolymer-based nanocomposites containing well-ordered nanoparticles with various morphologies can be readily obtained by adjusting the nanoparticle concentration. Moreover, the structural evolution of nanocomposite thin films as a function of nanoparticle loading is unveiled using grazing-incidence transmission small-angle X-ray scattering and atomic force microscopy. The morphological transformation proceeds through a phase transition from perforated lamellae to in-plane cylinder layout, followed by structural changes. The successful achievement of a variety of morphologies represents an effective and straightforward approach to producing functional hybrid nanocomposites for potential applications in various functional devices.

8.
ACS Nano ; 16(2): 2608-2620, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104108

RESUMO

The drying behavior of regenerated cellulose gel beads swollen with different nonsolvents (e.g., water, ethanol, water/ethanol mixtures) is studied in situ on the macroscopic scale with an optical microscope as well as on nanoscale using small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques. Depending on the cellulose concentration, the structural evolution of beads during drying follows one of three distinct regimes. First, when the cellulose concentration is lower than 0.5 wt %, the drying process comprises three steps and, regardless of the water/ethanol mixture composition, a sharp structural transition corresponding to the formation of a cellulose II crystalline structure is observed. Second, when the cellulose concentration is higher than 5.0 wt %, a two-step drying process is observed and no structural transition occurs for any of the beads studied. Third, when the cellulose concentration is between 0.5 and 5.0 wt %, the drying process is dependent on the nonsolvent composition. A three-step drying process takes place for beads swollen with water/ethanol mixtures with a water content higher than 20%, while a two-step drying process is observed when the water content is lower than 20%. To describe the drying behavior governed by the cellulose concentration and nonsolvent composition, a simplified phase diagram is proposed.


Assuntos
Celulose , Água , Celulose/química , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
9.
ACS Nano ; 14(6): 6774-6784, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32383585

RESUMO

The macro- and microstructural evolution of water swollen and ethanol swollen regenerated cellulose gel beads have been determined during drying by optical microscopy combined with analytical balance measurements, small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS). Two characteristic length scales, which are related to the molecular dimension of cellulose monomer and elongated aggregates of these monomers, could be identified for both types of beads by SAXS. For ethanol swollen beads, only small changes to the structures were detected in both the SAXS and WAXS measurements during the entire drying process. However, the drying of cellulose from water follows a more complex process when compared to drying from ethanol. As water swollen beads dried, they went through a structural transition where elongated structures changed to spherical structures and their dimensions increased from 3.6 to 13.5 nm. After complete drying from water, the nanostructures were characterized as a combination of rodlike structures with an approximate size of cellulose monomers (0.5 nm), and spherical aggregates (13.5 nm) without any indication of heterogeneous meso- or microporosity. In addition, WAXS shows that cellulose II hydrate structure appears and transforms to cellulose II during water evaporation, however it is not possible to determine the degree of crystallinity of the beads from the present measurements. This work sheds lights on the structural changes that occur within regenerated cellulose materials during drying and can aid in the design and application of cellulosic materials as fibers, adhesives, and membranes.

10.
Nanomaterials (Basel) ; 5(4): 2203-2211, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28347116

RESUMO

Ultrasmall nanoparticles, with sizes in the 1-3 nm range, exhibit unique properties distinct from those of free molecules and larger-sized nanoparticles. Demonstrating that the hydrothermal method can serve as a facile method for the synthesis of platinum nanoparticles, we successfully synthesized ultrasmall Pt nanoparticles with an average size of 2.45 nm, with the aid of poly(vinyl pyrrolidone) (PVP) as reducing agents and capping agents. Because of the size effect, these ultrasmall Pt nanoparticles exhibit a high activity toward the methanol oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA