RESUMO
Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.
RESUMO
Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.
RESUMO
Driven by huge demand for flexible optoelectronic devices, high-performance flexible transparent electrodes are continuously sought. In this work, a flexible multilayer transparent electrode with the structure of ZnO/Ag/CuSCN (ZAC) is engineered, featuring inorganic solution-processed cuprous thiocyanate (CuSCN) as a hole-transport antireflection coating. The ZAC electrode exhibits an average transmittance of 94% (discounting the substrate) in the visible range, a sheet resistance ( Rsh) of 9.7 Ω/sq, a high mechanical flexibility without Rsh variation after bending 10 000 times, a long-term stability of 400 days in ambient environment, and a scalable fabrication process. Moreover, spontaneously formed nanobulges are integrated into ZAC electrode, and light outcoupling is significantly improved. As a result, when applied into super yellow-based flexible organic light-emitting diode, the ZAC electrode provides a high-current efficiency of 23.4 cd/A and excellent device flexibility. These results suggest that multilayer thin films with ingenious material design and engineering can serve as a promising flexible transparent electrode for optoelectronic applications.
RESUMO
The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.