Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Res ; 244: 117902, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092237

RESUMO

Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Aves Canoras , Animais , Mercúrio/análise , Teorema de Bayes , Monitoramento Ambiental , Dieta , Isótopos
2.
Rep Prog Phys ; 86(10)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37531952

RESUMO

The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.


Assuntos
Redes Reguladoras de Genes , Modelos Biológicos , Dinâmica não Linear
3.
Proc Natl Acad Sci U S A ; 116(9): 3909-3918, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733294

RESUMO

Metabolic plasticity enables cancer cells to switch their metabolism phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) during tumorigenesis and metastasis. However, it is still largely unknown how cancer cells orchestrate gene regulation to balance their glycolysis and OXPHOS activities. Previously, by modeling the gene regulation of cancer metabolism we have reported that cancer cells can acquire a stable hybrid metabolic state in which both glycolysis and OXPHOS can be used. Here, to comprehensively characterize cancer metabolic activity, we establish a theoretical framework by coupling gene regulation with metabolic pathways. Our modeling results demonstrate a direct association between the activities of AMPK and HIF-1, master regulators of OXPHOS and glycolysis, respectively, with the activities of three major metabolic pathways: glucose oxidation, glycolysis, and fatty acid oxidation. Our model further characterizes the hybrid metabolic state and a metabolically inactive state where cells have low activity of both glycolysis and OXPHOS. We verify the model prediction using metabolomics and transcriptomics data from paired tumor and adjacent benign tissue samples from a cohort of breast cancer patients and RNA-sequencing data from The Cancer Genome Atlas. We further validate the model prediction by in vitro studies of aggressive triple-negative breast cancer (TNBC) cells. The experimental results confirm that TNBC cells can maintain a hybrid metabolic phenotype and targeting both glycolysis and OXPHOS is necessary to eliminate their metabolic plasticity. In summary, our work serves as a platform to symmetrically study how tuning gene activity modulates metabolic pathway activity, and vice versa.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Redes e Vias Metabólicas/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Modelos Teóricos , Fosforilação Oxidativa , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Br J Cancer ; 124(12): 1902-1911, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33859341

RESUMO

Cancer cells have the plasticity to adjust their metabolic phenotypes for survival and metastasis. A developmental programme known as epithelial-to-mesenchymal transition (EMT) plays a critical role during metastasis, promoting the loss of polarity and cell-cell adhesion and the acquisition of motile, stem-cell characteristics. Cells undergoing EMT or the reverse mesenchymal-to-epithelial transition (MET) are often associated with metabolic changes, as the change in phenotype often correlates with a different balance of proliferation versus energy-intensive migration. Extensive crosstalk occurs between metabolism and EMT, but how this crosstalk leads to coordinated physiological changes is still uncertain. The elusive connection between metabolism and EMT compromises the efficacy of metabolic therapies targeting metastasis. In this review, we aim to clarify the causation between metabolism and EMT on the basis of experimental studies, and propose integrated theoretical-experimental efforts to better understand the coupled decision-making of metabolism and EMT.


Assuntos
Metabolismo Energético/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/patologia , Animais , Diferenciação Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia
5.
Proc Natl Acad Sci U S A ; 114(13): E2644-E2653, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289210

RESUMO

Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Fenótipo , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteoma
6.
Phys Biol ; 16(2): 025002, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30557866

RESUMO

The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.


Assuntos
Transição Epitelial-Mesenquimal , Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Biologia Computacional , Células Epiteliais/metabolismo , Mesoderma/fisiologia , Modelos Genéticos , Fenótipo
7.
PLoS Comput Biol ; 13(3): e1005456, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28362798

RESUMO

One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE), for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT), from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Modelos Genéticos , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Humanos , Cinética , Modelos Estatísticos , Distribuição Aleatória
8.
J Cell Biochem ; 118(9): 2559-2570, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28266048

RESUMO

More than 90% of cancer-related deaths are caused by metastasis. Epithelial-to-Mesenchymal Transition (EMT) causes tumor cell dissemination while the reverse process, Mesenchymal-to-Epithelial Transition (MET) allows cancer cells to grow and establish a potentially deadly metastatic lesion. Recent evidence indicates that in addition to E and M, cells can adopt a stable hybrid Epithelial/Mesenchymal (E/M) state where they can move collectively leading to clusters of Circulating Tumor Cells-the "bad actors" of metastasis. EMT is postulated to occur in all four major histological breast cancer subtypes. Here, we identify a set of genes strongly correlated with CDH1 in 877 cancer cell lines, and differentially expressed genes in cell lines overexpressing ZEB1, SNAIL, and TWIST. GRHL2 and ESRP1 appear in both these sets and also correlate with CDH1 at the protein level in 40 breast cancer specimens. Next, we find that GRHL2 and CD24 expression coincide with an epithelial character in human mammary epithelial cells. Further, we show that high GRHL2 expression is highly correlated with worse relapse-free survival in all four subtypes of breast cancer. Finally, we integrate CD24, GRHL2, and ESRP1 into a mathematical model of EMT regulation to validate the role of these players in EMT. Our data analysis and modeling results highlight the relationships among multiple crucial EMT/MET drivers including ZEB1, GRHL2, CD24, and ESRP1, particularly in basal-like breast cancers, which are most similar to triple-negative breast cancer (TNBC) and are considered the most dangerous subtype. J. Cell. Biochem. 118: 2559-2570, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
9.
Phys Biol ; 14(3): 035007, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28443829

RESUMO

Many cell-fate decisions during embryonic development are governed by a motif comprised of two transcription factors (TFs) A and B that mutually inhibit each other and may self-activate. This motif, called as a self-activating toggle switch (SATS), can typically have three stable states (phenotypes)-two corresponding to differentiated cell fates, each of which has a much higher level of one TF than the other-[Formula: see text] or [Formula: see text]-and the third state corresponding to an 'undecided' stem-like state with similar levels of both A and B-[Formula: see text]. Furthermore, two or more SATSes can be coupled together in various topologies in different contexts, thereby affecting the coordination between multiple cellular decisions. However, two questions remain largely unanswered: (a) what governs the co-existence and relative stability of these three stable states? (b) What orchestrates the decision-making of coupled SATSes? Here, we first demonstrate that the co-existence and relative stability of the three stable states in an individual SATS can be governed by the relative strength of self-activation, external signals activating and/or inhibiting A and B, and mutual degradation between A and B. Simultaneously, we investigate the effects of these factors on the decision-making of two coupled SATSes. Our results offer novel understanding into the operating principles of individual and coupled tristable self-activating toggle switches (SATSes) regulating cellular differentiation and can yield insights into synthesizing three-way genetic circuits and understanding of cellular reprogramming.


Assuntos
Diferenciação Celular , Reprogramação Celular , Desenvolvimento Embrionário/fisiologia , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Modelos Biológicos
10.
J Hazard Mater ; 468: 133783, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367440

RESUMO

To elucidate the sources and transfer of mercury (Hg) in terrestrial food chains, particularly in heavily Hg-contaminated rice paddy ecosystems, we collected rice leaves, invertebrates, and Russet Sparrow nestlings from a clear food chain and analyzed the dietary compositions and potential Hg sources using stable Hg isotopes coupled with a Bayesian isotope mixing model (BIMM). Our findings indicated that MeHg exposure is dominant through the dietary route, with caterpillars, grasshoppers, and katydids being the main prey items, while the less provisioned spiders, dragonflies, and mantises contributed the most of the Hg to nestlings. We found minimal MIF but certain MDF in this terrestrial food chain and identified two distinct MeHg sources of dietary exposure and maternal transfer. We firstly found that the dietary route contributed substantially (almost tenfold) more MeHg to the nestlings than maternal transfer. These findings offer new insights into the integration of Hg from the dietary route and maternal transfers, enhancing our understanding of fluctuating Hg exposure risk during the nestling stage. Our study suggested that Hg isotopes combined with BIMM is an effective approach for tracing Hg sources in birds and for gaining in-depth insight into the trophic transfers and biomagnification of MeHg in food chains.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Odonatos , Oryza , Aves Canoras , Poluentes Químicos da Água , Animais , Isótopos de Mercúrio/análise , Cadeia Alimentar , Ecossistema , Bioacumulação , Teorema de Bayes , Mercúrio/análise , Isótopos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
11.
iScience ; 26(1): 105719, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582834

RESUMO

Cancer metastasis relies on an orchestration of traits driven by different interacting functional modules, including metabolism and epithelial-mesenchymal transition (EMT). During metastasis, cancer cells can acquire a hybrid metabolic phenotype (W/O) by increasing oxidative phosphorylation without compromising glycolysis and they can acquire a hybrid epithelial/mesenchymal (E/M) phenotype by engaging EMT. Both the W/O and E/M states are associated with high metastatic potentials, and many regulatory links coupling metabolism and EMT have been identified. Here, we investigate the coupled decision-making networks of metabolism and EMT. Their crosstalk can exhibit synergistic or antagonistic effects on the acquisition and stability of different coupled metabolism-EMT states. Strikingly, the aggressive E/M-W/O state can be enabled and stabilized by the crosstalk irrespective of these hybrid states' availability in individual metabolism or EMT modules. Our work emphasizes the mutual activation between metabolism and EMT, providing an important step toward understanding the multifaceted nature of cancer metastasis.

12.
ArXiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36824430

RESUMO

The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.

13.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796477

RESUMO

Checkpoint blockade revolutionized cancer therapy, but we still lack a quantitative, mechanistic understanding of how inhibitory receptors affect diverse signaling pathways. To address this issue, we developed and applied a fluorescent intracellular live multiplex signal transduction activity reporter (FILMSTAR) system to analyze PD-1-induced suppressive effects. These studies identified pathways triggered solely by TCR or requiring both TCR and CD28 inputs. Using presenting cells differing in PD-L1 and CD80 expression while displaying TCR ligands of distinct potency, we found that PD-1-mediated inhibition primarily targets TCR-linked signals in a manner highly sensitive to peptide ligand quality. These findings help resolve discrepancies in existing data about the site(s) of PD-1 inhibition in T cells while emphasizing the importance of neoantigen potency in controlling the effects of checkpoint therapy.


Assuntos
Receptor de Morte Celular Programada 1 , Transdução de Sinais , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno B7-H1/metabolismo
14.
Med Biol Eng Comput ; 60(1): 33-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34677739

RESUMO

Computerized interpretation of electrocardiogram plays an important role in daily cardiovascular healthcare. However, inaccurate interpretations lead to misdiagnoses and delay proper treatments. In this work, we built a high-quality Chinese 12-lead resting electrocardiogram dataset with 15,357 records, and called for a community effort to improve the performances of CIE through the China ECG AI Contest 2019. This dataset covers most types of ECG interpretations, including the normal type, 8 common abnormal types, and the other type which includes both uncommon abnormal and noise signals. Based on the Contest, we systematically assessed and analyzed a set of top-performing methods, most of which are deep neural networks, with both their commonalities and characteristics. This study establishes the benchmarks for computerized interpretation of 12-lead resting electrocardiogram and provides insights for the development of new methods. Graphical Abstract A community effort to assess and improve computerized interpretation of 12-lead resting electrocardiogram.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Erros de Diagnóstico , Humanos , Descanso
15.
NPJ Breast Cancer ; 7(1): 66, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050189

RESUMO

Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.

16.
J R Soc Interface ; 17(169): 20200500, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32781932

RESUMO

Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this question, we applied a recently developed computational method, random circuit perturbation (RACIPE), to a nine-component gene regulatory network (GRN) governing stemness, from which we identified robust gene states. Among them, four out of the five most probable gene states exhibit gene expression patterns observed in single mouse embryonic cells at 32-cell and 64-cell stages. These gene states can be robustly predicted by the stemness GRN but not by randomized versions of the stemness GRN. Strikingly, we found a hierarchical structure of the GRN with the Oct4/Cdx2 motif functioning as the first decision-making module followed by Gata6/Nanog. We propose that stem cell populations, instead of being viewed as all having a specific cellular state, can be regarded as a heterogeneous mixture including cells in various states. Upon perturbations by external signals, stem cells lose the capacity to access certain cellular states, thereby becoming differentiated. The new gene states and key parameters regulating transitions among gene states proposed by RACIPE can be used to guide experimental strategies to better understand differentiation and design reprogramming. The findings demonstrate that the functions of the stemness GRN is mainly determined by its well-evolved network topology rather than by detailed kinetic parameters.


Assuntos
Redes Reguladoras de Genes , Células-Tronco , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Cinética , Camundongos
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 353-356, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018001

RESUMO

Bundle branch block (BBB) is one of the most common cardiac disorder, and can be detected by electro-cardiogram (ECG) signal in clinical practice. Conventional methods adopted some kinds of hand-craft features, whose discriminative power is relatively low. On the other hand, these methods were based on the supervised learning, which required the high cost heartbeat annotation in the training. In this paper, a novel end-to-end deep network was proposed to classify three types of heartbeat: right BBB (RBBB), left BBB (LBBB) and others with a multiple instance learning based training strategy. We trained the proposed method on the China Physiological Signal Challenge 2018 database (CPSC) and tested on the MIT-BIH Arrhythmia database (AR). The proposed method achieved an accuracy of 78.58%, and sensitivity of 84.78% (LBBB), 51.23% (others) and 99.72% (RBBB), better than the baseline methods. Experimental results show that our method would be a good choice for the BBB classification on the ECG dataset with record-level labels instead of heartbeat annotations.


Assuntos
Bloqueio de Ramo , Eletrocardiografia , Arritmias Cardíacas/diagnóstico , Bloqueio de Ramo/diagnóstico , China , Frequência Cardíaca , Humanos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 418-421, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018017

RESUMO

The multi-label electrocardiogram (ECG) classification is to automatically predict a set of concurrent cardiac abnormalities in an ECG record, which is significant for clinical diagnosis. Modeling the cardiac abnormality dependencies is the key to improving classification performance. To capture the dependencies, we proposed a multi-label classification method based on the weighted graph attention networks. In the study, a graph taking each class as a node was mapped and the class dependencies were represented by the weights of graph edges. A novel weights generation method was proposed by combining the self-attentional weights and the prior learned co-occurrence knowledge of classes. The algorithm was evaluated on the dataset of the Hefei Hi-tech Cup ECG Intelligent Competition for 34 kinds of ECG abnormalities classification. And the micro-f 1 and the macro-f 1 of cross validation respectively were 91.45% and 44.48%. The experiment results show that the proposed method can model class dependencies and improve classification performance.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Algoritmos , Atenção , Humanos , Projetos de Pesquisa
19.
Front Oncol ; 10: 1426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923395

RESUMO

Cancer cells adjust their metabolic profiles to evade treatment. Metabolic adaptation is complex and hence better understood by an integrated theoretical-experimental approach. Using a minimal kinetic model, we predicted a previously undescribed Low/Low (L/L) phenotype, characterized by low oxidative phosphorylation (OXPHOS) and low glycolysis. Here, we report that L/L metabolism is observed in BRAF-mutated melanoma cells that enter a drug-tolerant "idling state" upon long-term MAPK inhibition (MAPKi). Consistently, using publicly available RNA-sequencing data of both cell lines and patient samples, we show that melanoma cells decrease their glycolysis and/or OXPHOS activity upon MAPKi and converge toward the L/L phenotype. L/L metabolism is unfavorable for tumor growth, yet supports successful cell division at ~50% rate. Thus, L/L drug-tolerant idling cells are a reservoir for accumulating mutations responsible for relapse, and it should be considered as a target subpopulation for improving MAPKi outcomes in melanoma treatment.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 79-82, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945849

RESUMO

Bundle branch block (BBB) is a common conduction block disease and can be diagnosed using electrocardiogram (ECG) signal in clinical practice. In this paper, a novel method was proposed to detect two types of BBB: right BBB (RBBB) and left BBB (LBBB) based on the combination of deep features and several kinds of expert features. We evaluated the proposed method on the MIT-BIH Arrhythmia database (AR) and China Physiological Signal Challenge 2018 database (CPSC). The proposed method achieved an accuracy of 99.96% (AR) in the class-oriented evaluation and an accuracy of 98.76% (AR) and 97.88% (CPSC) in the subject-oriented evaluation, better than the baseline methods. Experimental results show that our method would be a good choice for the detection of the BBB.


Assuntos
Bloqueio de Ramo , Eletrocardiografia , Arritmias Cardíacas , China , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA