Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
iScience ; 27(6): 109998, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947508

RESUMO

Deciphering how different behaviors and ultrasonic vocalizations (USVs) of rats interact can yield insights into the neural basis of social interaction. However, the behavior-vocalization interplay of rats remains elusive because of the challenges of relating the two communication media in complex social contexts. Here, we propose a machine learning-based analysis system (ARBUR) that can cluster without bias both non-step (continuous) and step USVs, hierarchically detect eight types of behavior of two freely behaving rats with high accuracy, and locate the vocal rat in 3-D space. ARBUR reveals that rats communicate via distinct USVs during different behaviors. Moreover, we show that ARBUR can indicate findings that are long neglected by former manual analysis, especially regarding the non-continuous USVs during easy-to-confuse social behaviors. This work could help mechanistically understand the behavior-vocalization interplay of rats and highlights the potential of machine learning algorithms in automatic animal behavioral and acoustic analysis.

2.
Cyborg Bionic Syst ; 4: 0032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342211

RESUMO

In this paper, we propose a novel method for emulating rat-like behavioral interactions in robots using reinforcement learning. Specifically, we develop a state decision method to optimize the interaction process among 6 known behavior types that have been identified in previous research on rat interactions. The novelty of our method lies in using the temporal difference (TD) algorithm to optimize the state decision process, which enables the robots to make informed decisions about their behavior choices. To assess the similarity between robot and rat behavior, we use Pearson correlation. We then use TD-λ to update the state value function and make state decisions based on probability. The robots execute these decisions using our dynamics-based controller. Our results demonstrate that our method can generate rat-like behaviors on both short- and long-term timescales, with interaction information entropy comparable to that between real rats. Overall, our approach shows promise for controlling robots in robot-rat interactions and highlights the potential of using reinforcement learning to develop more sophisticated robotic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA