Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Calcif Tissue Int ; 114(4): 360-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308720

RESUMO

Kummell's disease (KD) is a rare clinical complication of osteoporotic vertebral compression fractures (OVCFs). Minimally invasive surgery is an important way to treat KD. In this paper, we used Percutaneous Vertebroplasty (PVP) and Vesselplasty (VP) to treat KD. 125 patients with KD were admitted to our hospital. Among them, 89 patients received PVP and 36 received VP. All patients underwent operations successfully. VAS scores and ODI of both groups at each postoperative time point were lower than preoperatively. Postoperative Cobb angle of both groups postoperatively was lower than preoperatively (p < 0.05). The anterior height and ratio of vertebra compression of both groups postoperatively was lower than preoperatively (p < 0.05). Cement leakage occurred in 16 vertebrae (16/89) in PVP group and one (1/36) in VP group. Two patients suffered from transient paraplegia in PVP group immediately after operation. Adjacent vertebral fractures occurred in one patient in PVP group and one in VP group. Re-fracture of affected vertebra occurred in one patient in PVP group. Besides, four patients suffered from bone cement loosening in PVP group while one in VP group. Both PVP and VP play an important effect in pain relief and functional recovery for the treatment of KD. And VP is more effective than PVP in preventing cement leakage.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Vertebroplastia/efeitos adversos , Estudos Retrospectivos , Fraturas da Coluna Vertebral/etiologia , Fraturas por Compressão/cirurgia , Fraturas por Compressão/complicações , Resultado do Tratamento , Cimentos Ósseos/uso terapêutico , Fraturas por Osteoporose/complicações
2.
Ecotoxicol Environ Saf ; 282: 116691, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981391

RESUMO

Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.


Assuntos
Biodegradação Ambiental , Lolium , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Consórcios Microbianos , Mineração , Fósforo/metabolismo , Biomassa , Nitrogênio/metabolismo
3.
Diabetol Metab Syndr ; 16(1): 122, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825679

RESUMO

BACKGROUND: Sarcopenia and diabetes are both prevalent health problems worldwide. However, little is known about the relationship between prediabetes and the prevalence and severity of sarcopenia. Therefore, the current study aimed to explore the association between glucose status and the components of sarcopenia, including low muscle mass (LMM), low muscle strength (LMS) and low gait speed (LGS) in US adults. METHODS: Data from the 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) were analyzed. A total of 4002 participants aged ≥ 50 years with available information on glucose status (NGR: 1939 cases; prediabetes: 1172 cases; diabetes: 891 cases) and sarcopenia were included in this study. Sarcopenia was defined according to the Foundation for National Institute of Health criteria. Muscle mass, muscle strength and gait speed were used to evaluate sarcopenia and its severity. Weighed multivariable logistic regression were used to explore the association between glucose status and the components of sarcopenia. The hypothetical population attributable fraction (PAF) for the glucose status was also calculated. RESULTS: The mean age of the cohort was 63.01 ± 9.89 years, with 49.4% being male. Multiple logistic regression analysis suggested that diabetes was an independent risk factor for sarcopenia (OR = 5.470, 95% CI 1.551-19.296) and showed a marginal association with severe sarcopenia (OR = 10.693, 95% CI 0.955-119.73) compared to NGR in men, but not in women. Additionally, prediabetes was independently associated with severe sarcopenia (OR = 3.647, 95% CI 1.532-8.697), LMS (OR = 1.472, 95% CI 1.018-2.127) and LGS (OR = 1.673, 95% CI 1.054-2.655) in the entire cohort. When stratifying by gender, we further observed that prediabetes was significantly associated with LMS in men (OR = 1.897, 95% CI 1.019-3.543) and related to LMM (OR = 3.174, 95% CI 1.287-7.829) and LGS (OR = 2.075, 95% CI 1.155-3.727) in women. HbA1c was positively associated with the prevalence of sarcopenia in men (OR = 1.993, 95% CI 1.511-2.629). PAF showed that diabetes accounted for 16.3% of observed sarcopenia cases. Maintaining NGR in the entire population could have prevented 38.5% of sarcopenia cases and 50.9% of severe sarcopenia cases. CONCLUSIONS: Prediabetes and diabetes were independently associated with the prevalence and severity of sarcopenia in US population. Slowing down the progression of hyperglycemia could have prevented a significant proportion of sarcopenia cases.

4.
World Neurosurg ; 183: e813-e817, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218435

RESUMO

BACKGROUND: The high incidence of nonunion in osteoporosis vertebral compression fractures (OVCFs) among the elderly population is a significant concern. But the hypothesis about etiopathogenesis of the intravertebral cleft (IVC) is not convincing. This study aims to investigate the association between spinopelvic parameters and IVC. METHODS: Patients with single segment IVC or healed vertebral compression fracture (HVCF) were retrospectively recruited for the study. Patients with IVC were assigned to the IVC group, the others were assigned to the HVCF group. We estimated whether IVC or HVCF locates the vertebra inflection point on lumbar lateral radiography. Distance between the sagittal line passing through the anterosuperior corner of S1and the center of the vertebra of healed fracture or with IVC (DSVA) and sacral slope (SS) were measured on lumbar lateral plain films. Intergroup spinopelvic parameters were analyzed. analysis to identify independent variables associated with IVC incidence. The receiver operating characteristics (ROC) curve was generated to identify the optimal cut-off point for statistically significant variables. RESULTS: Sixty-five patients were included in the study. Thirty patients (mean age: 74 ± 7.16 years) had single-level IVC, and 35 patients (mean age: 67.71 ± 7.30 years) had single-level HVCF. Age, body mass index (BMI), and DSVA were statistically different between the groups (all P < 0.05). The occurrence of IVC was related to the DSVA in the multivariate logistic regression analysis (OR = 0.73, P < 0.05). CONCLUSIONS: According to the results of this study, large DSVA was a risk factor for IVC formation in patients with OVCFs. Patients with global spinal malalignment should be actively observed during conservative treatment.


Assuntos
Fraturas por Compressão , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fraturas por Compressão/complicações , Fraturas da Coluna Vertebral/complicações , Estudos Retrospectivos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/complicações , Osteoporose/complicações , Osteoporose/diagnóstico por imagem
5.
J Pharm Biomed Anal ; 245: 116192, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703747

RESUMO

Calcium sensing receptor (CaSR) has become the novel target of treating osteoporosis with herbal medicine Ligustri Lucidi Fructus (LLF), however, the bioactive compounds responsible for anti-osteoporosis are hard to clarify due to the complexity and diversity of chemical constituents in it. Herein, the immobilized CaSR column was packed with stationary phase materials, which were derived from integrating CLIP-tagged CaSR directly out of crude cell lysates onto the surface of silica gels (5.83 mg/g) in a site-specific covalent manner. The column had a great specificity of recognizing agonists and kept a good stability for at least 3 weeks. The two compounds from LLF extract were screened and identified as olenuezhenoside and ligustroflavone using the immobilized CaSR column in conjunction with mass spectrometry. Molecular docking predicted that both compounds were bound in venus flytrap (VFT) domain of CaSR by the formation of hydrogen bonds. Cellular results showed that both compounds exhibited the distinct osteogenic activity by enhancing the proliferation, differentiation and mineralization of osteoblastic cells. Our study demonstrated that, the immobilized protein column enables to screen the bioactive compounds rapidly from herbal extract, and the newly discovered natural product ligands towards CaSR, including olenuezhenoside and ligustroflavone, will be the candidates for the treatment of osteoporosis.


Assuntos
Ligustrum , Simulação de Acoplamento Molecular , Osteogênese , Extratos Vegetais , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ligustrum/química , Humanos , Osteoblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Frutas/química , Animais , Osteoporose/tratamento farmacológico
6.
J Hazard Mater ; 473: 134647, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762986

RESUMO

Microbially-driven soil formation process is an emerging technology for the ecological rehabilitation of alkaline tailings. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. Herein, a 1-year field-scale experiment was applied to demonstrate the effect of nitrogen input on the structure and function of the microbiome in alkaline bauxite residue. Results showed that the contents of nutrient components were increased with Penicillium oxalicum (P. oxalicum) incorporation, as indicated by the increasing of carbon and nitrogen mineralization and enzyme metabolic efficiency. Specifically, the increasing enzyme metabolic efficiency was associated with nitrogen input, which shaped the microbial nutrient acquisition strategy. Subsequently, we evidenced that P. oxalicum played a significant role in shaping the assemblages of core bacterial taxa and influencing ecological functioning through intra- and cross-kingdom network analysis. Furthermore, a recruitment experiment indicated that nitrogen enhanced the enrichment of core microbiota (Nitrosomonas, Bacillus, Pseudomonas, and Saccharomyces) and may provide benefits to fungal community bio-diversity and microbial network stability. Collectively, these results demonstrated nitrogen-based coexistence patterns among P. oxalicum and microbiome and revealed P. oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. It will aid in promoting soil formation and ecological rehabilitation of bauxite residue. ENVIRONMENT IMPLICATION: Bauxite residue is a highly alkaline solid waste generated during the Bayer process for producing alumina. Attempting to transform bauxite residue into a stable soil-like substrate using low-cost microbial resources is a highly promising engineering. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. In this study, we evidenced the nitrogen-based coexistence patterns among Penicillium oxalicum and microbiome and revealed Penicillium oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. This study can improve the understanding of core microbes' assemblies that affect the microbiome physiological traits in soil formation processes.


Assuntos
Óxido de Alumínio , Bactérias , Microbiota , Nitrogênio , Penicillium , Microbiologia do Solo , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Nitrogênio/metabolismo , Óxido de Alumínio/química , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Solo/química
7.
Microbiome ; 12(1): 136, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039586

RESUMO

BACKGROUND: Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS: In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS: These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.


Assuntos
Ecossistema , Vírus Gigantes , Metagenoma , Microbiologia do Solo , China , Vírus Gigantes/genética , Vírus Gigantes/classificação , Solo/química , Filogenia , Genoma Viral/genética , Metagenômica
8.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
9.
Environ Int ; 191: 108964, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39173234

RESUMO

Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.

10.
Eur J Pharmacol ; 967: 176351, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290568

RESUMO

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.


Assuntos
Aminopiridinas , Doxorrubicina , Células Musculares , Sulfonamidas , Animais , Camundongos , Atrofia/induzido quimicamente , Autofagia , Doxorrubicina/efeitos adversos , NADPH Oxidase 2
11.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
12.
Arch Osteoporos ; 19(1): 2, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097861

RESUMO

Weight change was an influencing factor of osteoporosis and fracture in a controversial way. Based on a nationally representative data, we found that weight change from obesity in midlife to non-obesity in late adulthood was associated with a reduction in the risk of osteoporosis and wrist fracture in male, but not in female. INTRODUCTION: Obesity is usually recognized as a protective factor to osteoporosis and osteoporotic fracture. However, it is still unclear whether historical weight status was associated with the risk of osteoporosis and fracture. The aim of this study was to investigate the relationship between weight change patterns across adulthood and the prevalence of osteoporosis and fracture. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) with 8725 US adults aged ≥ 40 years were analyzed in this study. Weight change patterns were categorized as "stable non-obese," "obese with earlier weight gain," "obese with recent weight gain," and "revert to non-obese" based on the body mass index (BMI) at 25 years old, 10 years prior to baseline and at baseline. Body mineral density (BMD) was measured using dual x-ray absorptiometry (DXA), and osteoporosis was diagnosed based on the World Health Organization criteria. Self-reported occurrence of osteoporotic fractures were determined by questionnaires. RESULTS: Compared with subjects in "stable non-obese" group, obese with earlier weight gain were positively related to the increase of BMD in both genders, while elevated BMD was only observed in female of "obese with recent weight gain" group and in male of "revert to non-obese" group after multiple adjustment. Moreover, changing from the obesity to non-obesity in the 10 years period before baseline was associated with a 81.6% lower risk of osteoporosis (odds ratio (OR) 0.184, 95% confidence interval (CI) 0.037-0.914 (P = 0.039)) and a 69.8% lower risk of wrist fracture (OR 0.302, 95%CI 0.120-0.757 (P = 0.012)) in male, but not in female. CONCLUSION: Weight change from obesity in midlife to non-obesity in late adulthood was associated with a reduction in the risk of osteoporosis and wrist fracture in male. Our findings support the importance of investigating the mechanism of weight change in different life period.


Assuntos
Osteoporose , Fraturas por Osteoporose , Fraturas do Punho , Adulto , Feminino , Masculino , Humanos , Inquéritos Nutricionais , Densidade Óssea , Osteoporose/epidemiologia , Osteoporose/complicações , Obesidade/epidemiologia , Obesidade/complicações , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/complicações , Absorciometria de Fóton , Aumento de Peso , Fatores de Risco
13.
Braz. j. med. biol. res ; 52(1): e7844, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974274

RESUMO

Necroptosis is a regulated cell death mechanism. However, it is unknown whether necroptosis is involved in the death of tumor necrosis factor-α (TNF-α)-treated osteoblasts. Therefore, we conducted the study with TNF-α, Nec-1 (a specific inhibitor of necroptosis), and Z-IETD-FMK (a specific inhibitor of apoptosis) to determine whether necroptosis plays a role in the death of TNF-α-treated osteoblast cell line MC3T3-E1. Cell viability, cell death, and lactate dehydrogenase (LDH) release were assayed to evaluate cytotoxicity. Specific marker proteins receptor interacting protein kinase (RIPK3) and phosphorylated mixed lineage kinase domain-like protein (p-MLKL) for necroptosis, and cleaved caspase 3 for apoptosis were detected by western blot, and mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). We found that TNF-α inhibited cell proliferation in a dose- and time-dependent manner. Nec-1 plus Z-IETD-FMK restored cell viability and significantly decreased LDH release. In addition, TNF-α alone increased the cell population of AV+PI−, while Z-IETD-FMK caused a shift in the cell population from AV+PI− to AV+PI+. Furthermore, TNF-α significantly increased protein cleaved caspase 3. TNF-α plus Z-IETD-FMK significantly increased the proteins RIPK3 and MLKL phosphorylation in MC3T3-E1 cells, while the changes in mRNA levels of RIPK3, MLKL, and caspase 3 were not consistent with the changes in the corresponding protein expression levels. In conclusion, TNF-α induced preferentially apoptosis in osteoblast cell line and necroptosis played a decisive role when TNF-α-induced death was inhibited by the inhibitor of apoptosis. Combined treatment with Nec-1 and Z-IETD-FMK protected mouse osteoblasts from death induced by TNF-α.


Assuntos
Animais , Coelhos , Osteoblastos/patologia , Fator de Necrose Tumoral alfa/farmacologia , Caspase 8/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Necrose/patologia , Oligopeptídeos/farmacologia , Osteoblastos/efeitos dos fármacos , Fosforilação , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/farmacologia , Indóis/farmacologia , L-Lactato Desidrogenase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA