Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

2.
Eur J Pharmacol ; 974: 176373, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341079

RESUMO

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Hipertensão , Fator 2 Relacionado a NF-E2 , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Ribonucleotídeos , Transdução de Sinais , Animais , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Masculino , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/administração & dosagem , Ribonucleotídeos/farmacologia , Ribonucleotídeos/administração & dosagem , Proteínas Quinases Ativadas por AMP/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Citocinas/metabolismo
3.
Phytomedicine ; 118: 154951, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453193

RESUMO

BACKGROUND: Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE: In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS: We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS: The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKß, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION: Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.


Assuntos
Hipertensão , NF-kappa B , Idoso , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular , Capsaicina/farmacologia , Sirtuína 1/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Ratos Endogâmicos SHR
4.
Phytomedicine ; 52: 216-224, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599901

RESUMO

BACKGROUND: Berberine (BBR), a Chinese traditional herbal medicine, has many pharmacologic benefits such as anti-inflammation and anti-oxidation. It is widely used in clinical treatment of cardiovascular diseases such as hypertension. However, the mechanism of how BBR attenuates hypertension through affecting central neural system is not clear. PURPOSE: This study was designed to determine whether chronic infusion of BBR into the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. METHODS: Two-kidney, one-clip (2K1C) renovascular hypertensive rats were randomly assigned and treated with bilateral PVN infusion of BBR (2µg/h) or vehicle (artificial cerebrospinal fluid) via osmotic minipumps for 28 days. RESULTS: 2K1C rats showed higher mean arterial pressure (MAP) and PVN Fra-like activity, plasma levels of norepinephrine (NE), PVN levels of NOX2, NOX4, Erk1/2 and iNOS, and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD). Chronic infusion of BBR reduced MAP, PVN Fra-like activity and plasma levels of NE, reduced NOX2, NOX4, Erk1/2, iNOS and induced Cu/Zn-SOD in the PVN. CONCLUSIONS: These results suggest that BBR attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway in 2K1C renovascular hypertensive rats.


Assuntos
Berberina/farmacologia , Hipertensão/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Pressão Arterial , Masculino , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Norepinefrina/sangue , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA