Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 45(15): 4108-4111, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735235

RESUMO

Topology plays a fundamental role in contemporary physics and enables new information processing schemes and wave device physics with built-in robustness. However, the creation of photonic topological phases usually requires complex geometries that limit the prospect for miniaturization and integration and dispossess designers of additional degrees of freedom needed to control topological modes on-chip. By controlling the degree of asymmetry (DoA) in a photonic crystal with broken inversion symmetry, we report single-mode lasing of valley-Hall ring cavities at telecommunication wavelength. The DoA governs four photon confinement regimes at the interface of topologically distinct valley-Hall domains and evidences an interplay between the width of the topological bandgap and the quality factor of ring-like modes for single-mode operation. Our results open the door to novel optoelectronic devices and systems based on compact topological integrated circuits.

2.
Sci Adv ; 9(14): eadf9330, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018406

RESUMO

Complex networks play a fundamental role in understanding phenomena from the collective behavior of spins, neural networks, and power grids to the spread of diseases. Topological phenomena in such networks have recently been exploited to preserve the response of systems in the presence of disorder. We propose and demonstrate topological structurally disordered systems with a modal structure that enhances nonlinear phenomena in the topological channels by inhibiting the ultrafast leakage of energy from edge modes to bulk modes. We present the construction of the graph and show that its dynamics enhances the topologically protected photon pair generation rate by an order of magnitude. Disordered nonlinear topological graphs will enable advanced quantum interconnects, efficient nonlinear sources, and light-based information processing for artificial intelligence.

3.
Sci Rep ; 8(1): 16188, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385792

RESUMO

The Luneburg lens is a spherically symmetrical gradient refractive index (GRIN) device with unique imaging properties. Its wide field-of-view (FoV) and minimal aberration have lead it to be successfully applied in microwave antennas. However, only limited realizations have been demonstrated in acoustics. Previously proposed acoustic Luneburg lenses are mostly limited to inherently two-dimensional designs at frequencies from 1 kHz to 7 kHz. In this paper, we apply a new design method for scalable and self-supporting metamaterials to demonstrate Luneburg lenses for airborne sound and ultrasonic waves. Two Luneburg lenses are fabricated: a 2.5D ultrasonic version for 40 kHz and a 3D version for 8 kHz sound. Imaging performance of the ultrasonic version is experimentally demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA