Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Psychiatry Rep ; 23(9): 62, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34297230

RESUMO

PURPOSE OF REVIEW: We summarized peer-reviewed literature investigating the effect of virtual mindfulness-based interventions (MBIs) on sleep quality. We aimed to examine the following three questions: (1) do virtual MBIs improve sleep quality when compared with control groups; (2) does the effect persist long-term; and (3) is the virtual delivery method equally feasible compared to the in-person delivery method? RECENT FINDINGS: Findings suggest that virtual MBIs are equivalent to evidence-based treatments, and to a limited extent, more effective than non-specific active controls at reducing some aspects of sleep disturbance. Overall, virtual MBIs are more effective at improving sleep quality than usual care controls and waitlist controls. Studies provide preliminary evidence that virtual MBIs have a long-term effect on sleep quality. Moreover, while virtual MBI attrition rates are comparable to in-person MBI attrition rates, intervention adherence may be compromised in the virtual delivery method. This review highlights virtual MBIs as a potentially effective alternative to managing sleep disturbance during pandemic-related quarantine and stay-at-home periods. This is especially relevant due to barriers of accessing in-person interventions during the pandemic. Future studies are needed to explore factors that influence adherence and access to virtual MBIs, with a particular focus on diverse populations.


Assuntos
Atenção Plena , Transtornos do Sono-Vigília , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sono , Transtornos do Sono-Vigília/terapia
2.
FASEB J ; 33(2): 1644-1657, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30161001

RESUMO

Despite the success of approved systemic therapies for estrogen receptor α (ER)-positive breast cancer, drug resistance remains common. We hypothesized that secreted factors from the human tumor microenvironment could modulate drug resistance. We previously screened a library of 297 recombinant-secreted microenvironmental proteins for the ability to confer resistance to the anti-estrogen fulvestrant in 2 ER+ breast cancer cell lines. Herein, we considered whether factors that enhanced drug sensitivity could be repurposed as therapeutics and provide leads for drug development. Screening data revealed bone morphogenic protein (BMP)4 as a factor that inhibited cell growth and synergized with approved anti-estrogens and cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). BMP4-mediated growth inhibition was dependent on type I receptor activin receptor-like kinase (ALK)3-dependent phosphorylation (P) of mothers against decapentaplegic homolog (SMAD/P-SMAD)1 and 5, which could be reversed by BMP receptor inhibitors and ALK3 knockdown. The primary effect of BMP4 on cell fate was cell-cycle arrest, in which RNA sequencing, immunoblot analysis, and RNA interference revealed to be dependent on p21WAF1/Cip1 upregulation. BMP4 also enhanced sensitivity to approved inhibitors of mammalian target of rapamycin complex 1 and CDK4/6 via ALK3-mediated P-SMAD1/5 and p21 upregulation in anti-estrogen-resistant cells. Patients bearing primary ER+ breast tumors, exhibiting a transcriptomic signature of BMP4 signaling, had improved disease outcome following adjuvant treatment with anti-estrogen therapy, independently of age, tumor grade, and tumor stage. Furthermore, a transcriptomic signature of BMP4 signaling was predictive of an improved biologic response to the CDK4/6i palbociclib, in combination with an aromatase inhibitor in primary tumors. These findings highlight BMP4 and its downstream pathway activation as a therapeutic opportunity in ER+ breast cancer.-Shee, K., Jiang, A., Varn, F. S., Liu, S., Traphagen, N. A., Owens, P., Ma, C. X., Hoog, J., Cheng, C., Golub, T. R., Straussman, R., Miller, T. W. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER+ breast cancer.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Antagonistas de Androgênios/uso terapêutico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Sobrevida , Transcriptoma , Microambiente Tumoral
3.
Am J Respir Cell Mol Biol ; 55(5): 633-644, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27281171

RESUMO

Idiopathic pulmonary fibrosis is a chronic and progressive lung disease in which microvessel remodeling is deregulated. However, the mechanism by which deregulated angiogenesis contributes to the pathogenesis of pulmonary fibrosis remains unclear. Here we show that a transcription factor, Twist1, controls angiogenesis through the angiopoietin-Tie2 pathway, and that deregulation of this mechanism mediates pathological angiogenesis and collagen deposition in a bleomycin-induced mouse pulmonary fibrosis model. Twist1 knockdown decreases Tie2 expression and attenuates endothelial cell sprouting in vitro. Angiogenesis is also inhibited in fibrin gel implanted on Tie2-specific Twist1 conditional knockout (Twist1fl/fl/Tie2-cre) mouse lung in vivo. Inhibition of Twist1 phosphorylation at the serine 42 (Ser42) residue by treating endothelial cells with a mutant construct (Twist1S42A) decreases Tie2 expression and attenuates angiogenesis compared with full-length Twist1 in vitro and in vivo. Bleomycin challenge up-regulates Twist1 Ser42 phosphorylation and Tie2 expression, increases blood vessel density, and induces collagen deposition in the mouse lung, whereas these effects are attenuated in Twist1fl/fl/Tie2-cre mice or in mice treated with Twist1S42A mutant construct. These results indicate that Twist1 Ser42 phosphorylation contributes to the pathogenesis of bleomycin-induced pulmonary fibrosis through angiopoietin-Tie2 signaling.


Assuntos
Neovascularização Fisiológica , Proteínas Nucleares/metabolismo , Fibrose Pulmonar/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Bleomicina , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrina/farmacologia , Géis , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fibrose Pulmonar/patologia , Receptor TIE-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Am J Respir Cell Mol Biol ; 54(1): 103-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26091161

RESUMO

Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/sangue , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Neovascularização Fisiológica , Plasma Rico em Plaquetas/enzimologia , Receptor TIE-2/metabolismo , Regeneração , Animais , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Células Epiteliais/enzimologia , Tolerância ao Exercício , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/cirurgia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Pneumonectomia , Interferência de RNA , Receptor TIE-2/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Transfecção
5.
Dev Dyn ; 244(6): 713-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25715693

RESUMO

BACKGROUND: Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. RESULTS: Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. CONCLUSIONS: These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM.


Assuntos
Colágeno Tipo VI/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mesoderma/citologia , Dente Molar/embriologia , Odontogênese/fisiologia , Animais , Linhagem da Célula , Forma Celular , Colágeno Tipo VI/genética , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Análise em Microsséries , Dente Molar/metabolismo , Dente Molar/ultraestrutura , Especificidade de Órgãos , Fator de Transcrição PAX9 , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Plicamicina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína-Lisina 6-Oxidase/biossíntese , Proteína-Lisina 6-Oxidase/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/fisiologia , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
6.
Am J Respir Cell Mol Biol ; 52(1): 56-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24960457

RESUMO

Increased vascular permeability contributes to life-threatening pathological conditions, such as acute respiratory distress syndrome. Current treatments for sepsis-induced pulmonary edema rely on low-tidal volume mechanical ventilation, fluid management, and pharmacological use of a single angiogenic or chemical factor with antipermeability activity. However, it is becoming clear that a combination of multiple angiogenic/chemical factors rather than a single factor is required for maintaining stable and functional blood vessels. We have demonstrated that mouse platelet-rich plasma (PRP) extract contains abundant angiopoietin (Ang) 1 and multiple other factors (e.g., platelet-derived growth factor), which potentially stabilize vascular integrity. Here, we show that PRP extract increases tyrosine phosphorylation levels of Tunica internal endothelial cell kinase (Tie2) and attenuates disruption of cell-cell junctional integrity induced by inflammatory cytokine in cultured human microvascular endothelial cells. Systemic injection of PRP extract also increases Tie2 phosphorylation in mouse lung and prevents endotoxin-induced pulmonary edema and the consequent decreases in lung compliance and exercise intolerance resulting from endotoxin challenge. Soluble Tie2 receptor, which inhibits Ang-Tie2 signaling, suppresses the ability of PRP extract to inhibit pulmonary edema in mouse lung. These results suggest that PRP extract prevents endotoxin-induced pulmonary edema mainly through Ang-Tie2 signaling, and PRP extract could be a potential therapeutic strategy for sepsis-induced pulmonary edema and various lung diseases caused by abnormal vascular permeability.


Assuntos
Angiopoietina-1/metabolismo , Transfusão de Componentes Sanguíneos , Plasma , Edema Pulmonar/prevenção & controle , Receptor TIE-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Endotoxinas/toxicidade , Humanos , Camundongos , Fosforilação , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Sepse/complicações , Sepse/metabolismo , Sepse/patologia
7.
Am J Pathol ; 183(4): 1293-1305, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23928381

RESUMO

Glioblastoma is a highly vascularized brain tumor, and antiangiogenic therapy improves its progression-free survival. However, current antiangiogenic therapy induces serious adverse effects including neuronal cytotoxicity and tumor invasiveness and resistance to therapy. Although it has been suggested that the physical microenvironment has a key role in tumor angiogenesis and progression, the mechanism by which physical properties of extracellular matrix control tumor angiogenesis and glioblastoma progression is not completely understood. Herein we show that physical compaction (the process in which cells gather and pack together and cause associated changes in cell shape and size) of human glioblastoma cell lines U87MG, U251, and LN229 induces expression of collagen types IV and VI and the collagen crosslinking enzyme lysyl oxidase and up-regulates in vitro expression of the angiogenic factor vascular endothelial growth factor. The lysyl oxidase inhibitor ß-aminopropionitrile disrupts collagen structure in the tumor and inhibits tumor angiogenesis and glioblastoma multiforme growth in a mouse orthotopic brain tumor model. Similarly, d-penicillamine, which inhibits lysyl oxidase enzymatic activity by depleting intracerebral copper, also exhibits antiangiogenic effects on brain tumor growth in mice. These findings suggest that tumor microenvironment controlled by collagen structure is important in tumor angiogenesis and brain tumor progression.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Colágeno/metabolismo , Progressão da Doença , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Penicilamina/farmacologia , Penicilamina/uso terapêutico , Proteína-Lisina 6-Oxidase/metabolismo , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Behav Ther ; 55(5): 961-973, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174273

RESUMO

Previous research has shown a relationship between proximal (i.e., close-in-time) emotion experiences and suicidal ideation (SI). Yet, it remains unclear which emotion processes (i.e., the level of the emotion [intensity], how much emotions vary [variability], emotional consistency [inertia], how specific emotions are [differentiation]) and which emotions (i.e., sadness, hopelessness, anger, nervousness, happiness) are most potent predictors of SI. Seventy-seven adolescents (67.5% assigned female at birth) completed daily diaries for 4 weeks after psychiatric hospitalization. Levels of the above-mentioned emotions and frequency of SI were recorded. For each week and each emotion, mean (intensity), standard deviation (variability), autocorrelation (inertia), and intraclass correlation coefficients (ICCs; negative emotion differentiation) were calculated (i.e., four observations/person). Multilevel models examined whether (a) mean intensity, variability, and their interaction; and (b) mean intensity, inertia, and their interaction, were related to mean weekly SI frequency. A separate model examined whether negative emotion differentiation was related to mean weekly SI frequency after adjusting for mean intensity. A significant interaction between mean intensity of anger and variability of anger emerged (B = 0.54, SE = 0.24, p = .023); a positive relationship between mean anger and mean SI frequency was present at moderate or high levels of anger variability but not at its low levels. Mean intensity of most emotions was related to SI frequency in the expected directions. No other statistically significant findings emerged. Results revealed the importance of considering multiple emotion features, their dynamic nature, and their combined effect. Future research should explore mechanisms accounting for anger being related to heightened proximal SI, along with an examination of effective intervention strategies to reduce anger intensity and variability.


Assuntos
Emoções , Ideação Suicida , Humanos , Feminino , Masculino , Adolescente , Ira
9.
bioRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39211234

RESUMO

Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1ß, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).

10.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260393

RESUMO

Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4+ T cell activation, however CD8+ responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4+ T cells, and CD8+ T cells in naïve mice, with significant improvement over a bolus control. Pre-clinical studies using lymph-node-on-a-chip systems validated that DoriVac, when conjugated with antigenic peptides or proteins, induced promising cellular immune responses in human cells. These results suggest that DoriVac holds potential as a versatile, modular vaccine platform, capable of inducing both humoral and cellular immunities. The programmability of this platform underscores its potential utility in addressing future pandemics.

11.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948879

RESUMO

Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.

12.
medRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39399030

RESUMO

Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.

13.
Am J Respir Cell Mol Biol ; 49(6): 1009-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23841513

RESUMO

Physical properties of the tissues and remodeling of extracellular matrix (ECM) play an important role in organ development. Recently, we have reported that low-density lipoprotein receptor-related protein (LRP) 5/Tie2 signaling controls postnatal lung development by modulating angiogenesis. Here we show that tissue stiffness modulated by the ECM cross-linking enzyme, lysyl oxidase (LOX), regulates postnatal lung development through LRP5-Tie2 signaling. The expression of LRP5 and Tie2 is up-regulated twofold in lung microvascular endothelial cells when cultured on stiff matrix compared to those cultured on soft matrix in vitro. LOX inhibitor, ß-aminopropionitrile, disrupts lung ECM (collagen I, III, and VI, and elastin) structures, softens neonatal mouse lung tissue by 20%, and down-regulates the expression of LRP5 and Tie2 by 20 and 60%, respectively, which leads to the inhibition of postnatal lung development (30% increase in mean linear intercept, 1.5-fold increase in air space area). Importantly, hyperoxia treatment (Postnatal Days 1-10) disrupts ECM structure and stiffens mouse lung tissue by up-regulating LOX activity, thereby increasing LRP5 and Tie2 expression and deregulating alveolar morphogenesis in neonatal mice, which is attenuated by inhibiting LOX activity. These findings suggest that appropriate physical properties of lung tissue are necessary for physiological postnatal lung development, and deregulation of this mechanism contributes to postnatal lung developmental disorders, such as bronchopulmonary dysplasia.


Assuntos
Matriz Extracelular/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Receptor TIE-2/metabolismo , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Elasticidade , Células Endoteliais/metabolismo , Expressão Gênica , Hiperóxia/complicações , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Pulmão/irrigação sanguínea , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína-Lisina 6-Oxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor TIE-2/genética , Transdução de Sinais
14.
Microvasc Res ; 89: 15-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23660186

RESUMO

Development and regeneration of tissues and organs require precise coordination among endothelial, epithelial and mesenchymal morphogenesis. Angiogenesis plays key roles in normal development, wound healing, recovery from ischemic disease, and organ regeneration. It has been recognized that the combination of various angiogenic factors in an appropriate physiological ratio is critical for long-term functional blood vessel formation. Here we show that mouse soluble platelet-rich-plasma (PRP) extract, which includes abundant angiopoetin-1 (Ang1) and other angiogenic factors, stimulates endothelial cell growth, migration and differentiation in cultured human dermal microvascular endothelial cells in vitro and neonatal mouse retinal angiogenesis in vivo. Mouse platelet rich fibrin (PRF) matrix, the three-dimensional fibrin matrix that releases angiogenic factors with similar concentrations and proportions to the PRP extract, also recapitulates robust angiogenesis inside the matrix when implanted subcutaneously on the living mouse. Inhibition of Ang1-Tie2 signaling suppresses PRP extract-induced angiogenesis in vitro and angiogenic ability of the PRF matrix in vivo. Since human PRP extract and PRF matrix can be prepared from autologous peripheral blood, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related diseases as well as to the improvement of strategies for tissue engineering and organ regeneration.


Assuntos
Angiopoietina-1/metabolismo , Neovascularização Fisiológica/fisiologia , Plasma Rico em Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Vasos Retinianos/patologia , Animais , Proliferação de Células , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia de Fluorescência , Interferência de RNA , Regeneração , Retina/crescimento & desenvolvimento
15.
Psychiatry Res ; 326: 115347, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487460

RESUMO

Ecological Momentary Assessment (EMA) and wearable sensor data have the potential to enhance prediction of suicide risk in real-world conditions. However, the feasibility of this methodology with high-risk populations, including over extended periods, warrants closer attention. This study examined the feasibility and acceptability of concurrent EMA and wearable sensor monitoring in young adults after emergency department (ED) care for suicide risk-related concerns. For 2 months after ED discharge, 106 participants (ages 18-25; 81.1% female) took part in EMA surveys (4x per day) and passive sensor (Fitbit) monitoring and completed an end-of-study phone interview. Overall adherence to EMA (62.1%) and wearable sensor (53.6%) was moderate and comparable to briefer protocols. Relative to EMAs (81%), fewer participants completed the full 8 weeks of Fitbit (63%). While lower initial hopelessness was linked to reduced EMA adherence, previous-day suicidal ideation predicted lower Fitbit adherence on the next day. Self-endorsed barriers to EMA and wearable sensor adherence were also examined. Participants tended to report positive experience with the protocol, with majority indicating EMAs were minimally burdensome, reporting that the Fitbit was generally comfortable, and expressing interest in participating in a similar study again. Findings provide support for the feasibility and acceptability of concurrent intensive self-report and wearable sensor data during a high-risk period. Implications and future directions are discussed.


Assuntos
Avaliação Momentânea Ecológica , Suicídio , Humanos , Feminino , Adulto Jovem , Adolescente , Adulto , Masculino , Estudos de Viabilidade , Ideação Suicida , Inquéritos e Questionários
16.
Nat Commun ; 14(1): 6506, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845224

RESUMO

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Lesões por Radiação , Animais , Humanos , Lesão Pulmonar/etiologia , Pulmão/efeitos da radiação , Raios gama/efeitos adversos , Dispositivos Lab-On-A-Chip
17.
Clin Cancer Res ; 29(18): 3717-3728, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439680

RESUMO

PURPOSE: Clinical evidence indicates that treatment with estrogens elicits anticancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor α (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains underused. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. EXPERIMENTAL DESIGN: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDX), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. RESULTS: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacologic suppression of the DNA damage response via PARP inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2-mutant and BRCA1/2-wild-type cell line and PDX models. CONCLUSIONS: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Proteína BRCA1/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Proteína BRCA2/genética , Estrogênios/metabolismo , Dano ao DNA , Linhagem Celular Tumoral
18.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993590

RESUMO

Purpose: Clinical evidence indicates that treatment with estrogens elicits anti-cancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor alpha (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains under-utilized. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. Experimental Design: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived (LTED) ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDXs), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. Results: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacological suppression of the DNA damage response via poly(ADP-ribose) polymerase (PARP) inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2 -mutant and BRCA1 /2-wild-type cell line and PDX models. Conclusions: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.

19.
J Psychiatr Res ; 153: 56-63, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35797815

RESUMO

Advancements in mobile technology offer new possibilities to examine fine-grained processes underlying suicidal ideation in everyday, real-world conditions. Across two samples, this study examined temporal changes in near-term suicidal ideation in high-risk adolescents' daily life, and whether these dynamic experiences follow distinct longitudinal trajectories. Using latent process mixed modeling for multivariate outcomes, we investigated near-term changes in two parameters of suicidal thoughts (frequency and intensity) among adolescents who completed four-daily ecological momentary assessments (EMAs) during inpatient hospitalization (Sample 1: N = 61; 843 observations) or daily surveys for four weeks after discharge (Sample 2: N = 78; 1621 observations). Proximally assessed suicidal thoughts followed three trajectories characterized by low (Sample 1: 65.6%; Sample 2: 54%), declining (Sample 1: 4.9%; Sample 2: 15%), or persistently high (Sample 1: 29.5%; Sample 2: 31%) ideation in terms of frequency and urge severity. The persistent trajectory also showed consistently high within-person variability. The persistent group was differentiated by higher hopelessness and lower coping self-efficacy compared to the declining trajectory, and by an overall more severe clinical presentation relative to the low ideation trajectory. Suicidal thoughts in everyday life, across two contexts and regardless of data resolution (EMA and daily surveys), are not homogeneous and instead follow distinct longitudinal profiles. Findings point to the importance of closely monitoring suicidal ideation to identify patterns indicative of unrelenting suicidal thinking. Addressing high hopelessness and low self-efficacy may aid in reducing persistent ideation. Improving our understanding of how suicidal ideation unfolds in real-time may be critical to optimizing timely assessment and support.


Assuntos
Avaliação Momentânea Ecológica , Ideação Suicida , Adolescente , Humanos , Alta do Paciente , Autoimagem , Inquéritos e Questionários
20.
Nat Commun ; 13(1): 1928, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396513

RESUMO

Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.


Assuntos
Antígenos de Neoplasias , Imunidade Inata , Influenza Humana , Proteínas Quinases Ativadas por Mitógeno , Canais de Cátion TRPV , Antígenos de Neoplasias/metabolismo , Citocinas , Células Endoteliais , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/imunologia , Pulmão , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA